The Use of the Psychogalvanic Reflex in the Evaluation of Drugs for Premedication. Frederick A. Carpenter, M.D., John E. Steinhaus, M.D., and Clinton C. McCord, B.S., Grady Memorial Hospital, Emory University School of Medicine, Atlanta, Georgia.

In an effort to minimize the subjective errors inherent in the determination of the sedative effects of preanesthetic agents, we have utilized two methods during the past two years. The first method consisted of a series of rating scales employed by a single rater. The results of this double-blind study showed significant differences in the drugs investigated. Although these results were statistically valid, it would be necessary to use different raters to verify these findings, markedly increasing the complexity of the study. It was thought that a more accurate and concise method might be the use of the Psychogalvanic Reflex (PGR, GSR, or SGR) which is particularly sensitive to external stimulation, especially to the general arousal level. Consequently, it reveals anxieties otherwise hidden from simple questioning. Much research has been done with the PGR concerning emotional states under various stress conditions, and it is known that certain drugs depress the PGR response. These findings suggested that this technique might be adapted to a study of drugs which relieve anxiety.

A 5 × 5 Latin Square experimental design was used to evaluate the effects of four drugs and a placebo on the PGR. Five volunteers (medical students) received standardized intramuscular injections on five separate days over a period of five weeks. The drugs were randomized and given on a weight basis by the double-blind technique. Continuous skin resistance was recorded for 75 minutes divided into five 15-minute intervals; the first 15-minute interval served as a control. Within each 15-minute cell, the subject was stimulated with three standardized flashes of light presented to the subject at random. Mean changes of the absolute resistance in each cell were calculated and analysis variance was performed. The analysis shows that hydroxyzine markedly depressed the change in skin resistance produced by the PGR and these differences were significant to the 1 per cent level of confidence when compared to the placebo effect. Promethazine resulted in changes suggestive of a depressant effect on the PGR. Pentobarbital caused an increase in skin resistance apparently augmenting the PGR. The changes produced by meperidine showed some correlation to PGR depression but this was not statistically significant. Previous studies using rating scales and a large sample produced results similar to those of the PGR study in that the analysis showed statistical significance to the 1 per cent level of confidence for the two tranquilizers. Whereas pentobarbital showed no statistically significant difference from the placebo. The possibility of peripheral autonomic actions of these drugs must be considered. In addition, the relation of skin resistance changes and "anti-anxiety" effects must be further elaborated. With continued refinements there is promise that the PGR may be of value in screening the "anti-anxiety" type of agents and, in addition, demonstrate the onset and duration of action of these agents.

Spontaneous Readjustments in Acid-Base Balance at the Termination of Prolonged Hyperventilation. James A. Cutler, M.D., and Benton D. King, M.D., University of Buffalo School of Medicine and the Edward J. Meyer Memorial Hospital, Buffalo, New York. Respiratory alkalosis in an anesthetized man has been the subject of clinical and experimental investigation for many years, but until recently relatively few studies have been made on the effects of hyperventilation during anesthesia. Because hyperventilation appears to be a clinically useful adjunct to anesthesia, an extensive investigation of passive hyperventilation has been initiated. The report presents the methods used and preliminary observations made in one of the areas under study: the acid-base alterations which occur in anesthetized man during steady state of profound, passive hyperventilation and during the recovery periods. Throughout the initial phase of this study, ether was used as the sole agent following induction and intubation using thiopental and succinylcholine. A demand oxygen valve was used with an E.M.G. vaporizer to supply the three or four volume per cent ether vapor employed. Respiratory rates between 30 and 40 per minute with tidal volumes between 500 and 700 cc. were pro