Fluid Requirements for Neonatal Anesthesia and Operation

Edward J. Bennett, M.B., B.S.,* Michael J. Daugherty, M.D.,† M. T. Jenkins, M.D.‡

Thirty-six neonates undergoing anesthesia and major surgical operations in the first 24 hours of life were studied to determine whether requirements for fluids and electrolytes were similar to those of adults and how the neonates could handle sodium and water given during anesthesia and the postoperative period. During operation, 5 per cent dextrose in lactated Ringer’s solution was administered at the rate of 8 ml/kg body weight/hr. Postoperatively, fluid replacement was at the rate of 100 ml/kg/day, one-fifth to two-fifths of this volume as 5 per cent dextrose in lactated Ringer’s solution and the remainder, 5 per cent dextrose in water. Abnormal losses were replaced with isotonie saline solution and/or blood and/or albumin. Potassium supplementation was routine. Balance studies carried out over four postoperative days showed a tendency to hypernatremia and an inability to conserve sodium even with adequate volume administration. Findings suggest that the neonate requires increased amounts of multi-electrolyte solution during major surgical operations and continued administration of sodium in the postoperative period. (Key words: Neonates; Fluids; Anesthesia; Surgical operation.)

A review of methods of dealing with fluid requirements for neonates undergoing major surgery shows divergent opinions. Several authors favor the administration of 5 or 10 per cent dextrose in water.1-4 In other reports, emphasis has been placed on plasma,6,8 blood;7 lactated Ringer’s solution,8,9 or omission of intraoperative fluids.10-12 It appears that the major consensus is for no fluids at all.14-15 Much of the disagreement arises from misunderstanding of renal function in the neonate.16-21 The traditional concept of renal function in the neonatal period is one of immaturity of function, inability to excrete sodium loads, and inability to concentrate urine.22 (The neonatal period is defined usually as the first 28 days following birth of the full-term mature infant.)

In this study of fluid requirements for the neonate undergoing anesthesia and operation, we included 36 newborn infants who underwent surgical operation within the first 24 hours of life. Fluid balance studies of all these patients were carried out. Neonates 26 through 36 were studied more extensively than Neonates 1 to 25.

In the balance studies reported here, we found that the neonatal kidney lacks the ability to retain sodium despite hypernatremia, that fluid and electrolyte shifts during operation are apparently similar to those in adults, and that fluid therapy during surgical operations on neonates should include sodium administration. The neonatal kidney normally excretes sodium and concentrates urine, though these functions are not as well developed as in the adult kidney.

Studies

After tracheal intubation, the neonates were anesthetized either with nitrous oxide–oxygen, in a one-to-one relationship, plus intravenous d-tubocurarine, or with nitrous oxide–oxygen, one-to-one, maintained with halothane, 1 per cent or less. The technique included controlled ventilation. The basic apparatus was the Rees variation of Ayre’s T piece.23

Body weight, hemoglobin, fluid administration, urinary output, urinary specific gravity and pH, volume of gastric aspirate, and serum electrolyte findings were recorded. Studies of Neonates 1 through 25 were performed on either the second or the third postoperative
Table 1. Results of Retrospective Studies of Charts of Eleven Consecutive Newborn Infants, October 1967-January 1968

<table>
<thead>
<tr>
<th>Neurate No. and Diagnosis</th>
<th>Weight (lb)</th>
<th>Operative</th>
<th>Postoperative</th>
<th>Serum Electrolytes</th>
<th>Day Discharged from Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Blood</td>
<td>Fluids</td>
<td>Gastric Tube present</td>
<td>Maximum weight change (g)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time (min)</td>
<td>Loss (ml)</td>
<td>Administered (ml)</td>
<td>H₂O (ml)</td>
</tr>
<tr>
<td>1. Intestinal malrotation</td>
<td>2.4</td>
<td>130</td>
<td>30</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>2. Harel atresia</td>
<td>2.4</td>
<td>145</td>
<td>25</td>
<td>0</td>
<td>325</td>
</tr>
<tr>
<td>3. Pierre-Robin syndrome (two operative sites: intranasal and abdominal)</td>
<td>1.0</td>
<td>60</td>
<td>20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>4. Meningomyelocele</td>
<td>2.0</td>
<td>55</td>
<td>100</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>5. Omphalocele</td>
<td>3.0</td>
<td>45</td>
<td>20</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>6. Meconium ileus</td>
<td>2.3</td>
<td>145</td>
<td>25</td>
<td>20</td>
<td>325</td>
</tr>
<tr>
<td>7. Rectourethral fistula and imperforate anus</td>
<td>2.2</td>
<td>45</td>
<td>20</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>8. Duodenal atresia</td>
<td>1.9</td>
<td>70</td>
<td>60</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>9. Obstruction, middle lobe, right lung</td>
<td>3.2</td>
<td>70</td>
<td>10</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>10. Teratoma of tongue</td>
<td>3.3</td>
<td>50</td>
<td>20</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>11. Meningomyelocele</td>
<td>3.3</td>
<td>60</td>
<td>10</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

* Death due to aspiration pneumonia.
<table>
<thead>
<tr>
<th>Neurate No. and Diagnosis</th>
<th>Weight (kg)</th>
<th>Time (min)</th>
<th>Blood</th>
<th>Fluids</th>
<th>Gastric tube present</th>
<th>Maxi-mum weight change (g)</th>
<th>Average Fluids/Day</th>
<th>Serum Electrolytes</th>
<th>Day Discharged from Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Upper GI bleeding</td>
<td>2.7</td>
<td>35</td>
<td>10</td>
<td>0</td>
<td>+</td>
<td>-10</td>
<td>300</td>
<td>10</td>
<td>180</td>
</tr>
<tr>
<td>13. Cystic kidney</td>
<td>3.1</td>
<td>85</td>
<td>20</td>
<td>0</td>
<td>-</td>
<td>+10</td>
<td>200</td>
<td>12</td>
<td>140</td>
</tr>
<tr>
<td>14. Anular pancreas</td>
<td>1.8</td>
<td>125</td>
<td>10</td>
<td>0</td>
<td>+</td>
<td>+125</td>
<td>230</td>
<td>18</td>
<td>155</td>
</tr>
<tr>
<td>15. Intestinal malrotation</td>
<td>3.3</td>
<td>65</td>
<td>30</td>
<td>25</td>
<td>+</td>
<td>+50</td>
<td>380</td>
<td>12</td>
<td>215</td>
</tr>
<tr>
<td>16. Omphalocele</td>
<td>4.0</td>
<td>45</td>
<td>10</td>
<td>0</td>
<td>-</td>
<td>-50</td>
<td>290</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>17. Tracheoesophageal fistula</td>
<td>2.1</td>
<td>80</td>
<td>20</td>
<td>0</td>
<td>-</td>
<td>+100</td>
<td>250</td>
<td>7</td>
<td>145</td>
</tr>
<tr>
<td>18. Diaphragmatic hernia</td>
<td>3.5</td>
<td>120</td>
<td>30</td>
<td>0</td>
<td>+</td>
<td>+145</td>
<td>250</td>
<td>10</td>
<td>135</td>
</tr>
<tr>
<td>19. Meconium ileus</td>
<td>2.5</td>
<td>90</td>
<td>50</td>
<td>0</td>
<td>+</td>
<td>+120</td>
<td>270</td>
<td>8</td>
<td>180</td>
</tr>
<tr>
<td>20. Volvulus</td>
<td>2.0</td>
<td>100</td>
<td>15</td>
<td>0</td>
<td>+</td>
<td>-160</td>
<td>240</td>
<td>4.0</td>
<td>155</td>
</tr>
<tr>
<td>21. Imperforate anus</td>
<td>2.4</td>
<td>75</td>
<td>10</td>
<td>0</td>
<td>+</td>
<td>-230</td>
<td>250</td>
<td>8.5</td>
<td>140</td>
</tr>
<tr>
<td>22. Duodenal web</td>
<td>2.2</td>
<td>40</td>
<td>8</td>
<td>0</td>
<td>+</td>
<td>-410</td>
<td>280</td>
<td>14.5</td>
<td>145</td>
</tr>
<tr>
<td>23. Jejunal atresia</td>
<td>2.1</td>
<td>100</td>
<td>10</td>
<td>0</td>
<td>+</td>
<td>-120</td>
<td>290</td>
<td>12</td>
<td>185</td>
</tr>
<tr>
<td>24. Jejunal atresia</td>
<td>2.1</td>
<td>110</td>
<td>10</td>
<td>0</td>
<td>+</td>
<td>-145</td>
<td>320</td>
<td>12</td>
<td>215</td>
</tr>
<tr>
<td>25. Gastrochisis</td>
<td>2.8</td>
<td>75</td>
<td>15</td>
<td>0</td>
<td>+</td>
<td>-80</td>
<td>280</td>
<td>11</td>
<td>180</td>
</tr>
</tbody>
</table>

* Death due to hyaline membrane disease.
** Death due to peritonitis and septic shock.
day. For Neonates 26 through 36, balance studies were carried out daily through the fourth postoperative day.

Tables 1 and 2 supply data from all neonates who underwent surgical operations between October, 1967, and July, 1968, except those undergoing cardiac surgery. Neonates 1 to 25 included eight premature infants weighing less than 2.3 kg. Some of the neonates had multiple defects, although the tables indicate only those diagnoses for which operation was scheduled. Table 3 lists eleven neonates (four of them premature) who had no abnormalities except the conditions for which operation was planned.

Fluid Administration

INTRAOPERATIVE

Mean volume requirements: Five per cent dextrose in lactated Ringer’s solution was given, 8 ml/kg/hr, based on a normal maintenance requirement of 4 ml/kg/hr* plus replacement of insensible loss in the anesthetic system,^26^ plus estimated translocation of ECF at the site of operation.^27^

Additional intraoperative requirements:

1. Aspirated gastric volumes were measured and replaced with equal volumes of 0.9 per cent NaCl.^28^ Circulatory shifts or losses such as those resulting from edema, peritonitis, and ileus were replaced by lactated Ringer’s solution, by estimation.

2. Acidosis was treated with NaHCO₃, 10 mEq (in 10 ml solution), repeated as indicated by blood gas studies.^1^

3. Unless otherwise indicated by clinical signs, whole-blood replacement was delayed until there had been an estimated loss of 20 per cent of the blood volume, at which time the total loss was replaced.

4. Five per cent albumin, 2.5 or 5.0 g, in lactated Ringer’s solution, was administered to those neonates who still had clinical signs of hypovolemia despite replacement of a calculated volume of crystalloid solution.

POSTOPERATIVE

Maintenance requirements for water and electrolytes for the normal neonate are often expressed in terms of surface area rather than body weight. Usually, however, the ill newborn scheduled for operation has a smaller body surface area and weighs less than the mature newborn. Consequently, we administered fluids on a weight basis of 100 ml/kg body weight/day to avoid over-replacement. (Otherwise, basic fluid maintenance requirements are calculated on the basis of 1.5 l/m²/day,^24, 25^ recognizing that the surface area of the mature neonate closely approximates 0.2 m² and that of the average premature neonate.

<table>
<thead>
<tr>
<th>Neonate No. and Diagnosis</th>
<th>Weight (kg)</th>
<th>Operative Blood</th>
<th>Fluids</th>
<th>Gastric tube present</th>
<th>Maximum weight change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Time (min)</td>
<td>Loss (ml)</td>
<td>Administered (ml)</td>
<td>H₂O (ml)</td>
</tr>
<tr>
<td>26. Tracheoesophageal fistula</td>
<td>2.3</td>
<td>225</td>
<td>30</td>
<td>0</td>
<td>110</td>
</tr>
<tr>
<td>27. Intestinal malrotation</td>
<td>3.4</td>
<td>60</td>
<td>15</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>28. Imperforate anus</td>
<td>3.2</td>
<td>100</td>
<td>20</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>29. Duodenal obstruction due to anular pancreas</td>
<td>2.6</td>
<td>125</td>
<td>15</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>30. Esophageal atresia</td>
<td>2.2</td>
<td>50</td>
<td>10</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>31. Hirschsprung’s disease (colostomy)</td>
<td>3.5</td>
<td>45</td>
<td>10</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>32. Omphaloecele</td>
<td>3.0</td>
<td>75</td>
<td>10</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>33. Duodenal atresia</td>
<td>2.2</td>
<td>70</td>
<td>35</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>34. Intestinal malrotation</td>
<td>3.5</td>
<td>55</td>
<td>15</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>35. Duodenal atresia</td>
<td>2.5</td>
<td>120</td>
<td>30</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>36. Intestinal malrotation</td>
<td>2.4</td>
<td>105</td>
<td>25</td>
<td>0</td>
<td>110</td>
</tr>
</tbody>
</table>
FLUID REQUIREMENTS FOR NEONATAL ANESTHESIA

Eleven Selected Newborn Infants, January–May, 1969

Postoperative

<table>
<thead>
<tr>
<th>Average Fluids/Day</th>
<th>Urine</th>
<th>Serum Electrolytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O (ml)</td>
<td>Na⁺ (mEq)</td>
<td>K⁺ (mEq)</td>
</tr>
<tr>
<td>200</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>250</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>220</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>260</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>260</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>220</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>250</td>
<td>6.5</td>
<td>2</td>
</tr>
<tr>
<td>260</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>270</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>220</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>200</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

is 0.15 m².[29] Dextrose was given in quantities of 5 gm/kg/day to minimize protein catabolism and potassium loss.

In the uncomplicated postoperative course, a fifth of the calculated volume was given as 5 per cent dextrose in lactated Ringer’s solution and the remainder as 5 per cent dextrose in distilled water. For those neonates who had been operated upon for obstructive bowel lesions, peritonitis, or other causes of abdominal distention, two-fifths of the volume was given as lactated Ringer’s solution and the remainder as 5 per cent dextrose in water.[8, 30] This schedule was followed, also, for those who had elevated temperatures during the postoperative course or who were hyperventilating for any reason. Potassium as KCl, 16 mEq/l, was added to the intravenous fluid as a routine postoperative supplement.

For the complicated postoperative course, additional fluid requirements were met by 5 per cent dextrose in 0.9 per cent NaCl or by giving additional potassium in the following circumstances:

1. When there was a measured tendency toward hypokalemia, as shown by falling serum sodium measurements in the range of 135 down to 130 mEq/l, two-fifths of the daily maintenance volume was given as lactated Ringer’s solution with 5 per cent dextrose.

2. For those patients having definite hypokalemia (serum sodium less than 130 mEq/l) correction volumes of 0.9 per cent sodium chloride were calculated on the basis of restoring total body water (75 percent of body weight[24]).

3. For metabolic alkalosis, two-fifths of the daily volume was given as 0.9 per cent NaCl, with additional potassium calculated from serum levels.

4. Obvious abnormal losses resulting from gastric suction, gastric lavage, chest tubes and peritoneal drains were replaced with equal volumes of 0.9 per cent NaCl, plus replacement of potassium (2–4 mEq/day) in addition to the normal postoperative supplement.

The neonates were placed in special incubators in which temperature and humidity were controlled. We assumed, therefore, that insensible water loss was at the lower limits of normal, compensated for by basic fluid maintenance. (With fever and hyperventilation, insensible losses in a dry atmosphere could amount to 70 ml/kg/day. Although exhaled air normally does not contain electrolytes, sweat losses in the feverish neonate may amount to 2.0 mEq of Na⁺/kg/day.[24]).

Results

Neonates 1 through 25 represent all those who underwent surgical operations during the period from October, 1967, through July, 1968.
Salient facts are summarized in table 4. Neo-
notates 1 through 11 represent retrospective
studies of anesthesia records and charts. The
one death recorded was that of a neonate op-
erated upon for meconium ileus, with death
on the fifth postoperative day attributed to
aspiration pneumonia.

Neonates 12 through 25 include those for
whom data were collected during the operative
and postoperative courses. In this group
there were two deaths. One underwent repair
of an omphalocele, and died of hyaline mem-
brane disease on the first postoperative day.
The other death was that of a premature neo-
nate operated upon for jejunal atresia; death
on the eighth postoperative day was attributed
to peritonitis and septic shock.

There were no deaths in neonates 26 through
36, anesthetized after July, 1968, selected for
complete studies. They had no defects other
than the conditions for which they were oper-
ated upon.

The mean volume of intraoperative fluids
for neonates 1 through 25 was 115 ml with 14
mEq sodium, with a range from 10 to 470 ml,
and a range of sodium from 1 to 52 mEq.
Neonate 5, who received only 10 ml volume
and 1 mEq sodium, had a serum sodium con-
centration of 134 mEq/l, which fell to 131
mEq/l as larger volumes were used for hydra-
tion in postoperatively. Obviously, insufficient
volume and electrolytes were given during op-
eration.

Neonate 14, a premature infant weighing
1.8 kg, underwent duodenoduodenostomy be-
cause of an anular pancreas. Intravenous ad-
ministration of half-strength NaCl was begun
in the operating room before induction of an-
esthesia, and unintentionally 470 ml with 38
mEq sodium was given. This constituted a
gross fluid overload, but was well tolerated, as
judged by a weight gain of only 125 gm on the
first postoperative day. Adequate urinary
output compensated for this volume.

Neonate 18, weighing 3.5 kg, had severe
respiratory distress because of a congenital
diaphragmatic hernia. For correction of se-
vere acidosis, he was given 10 mEq NaHCO3,
repeated three times, and 260 ml 5 per cent
dextrose in water. Since clinical signs still
indicated hypovolemia (continued low blood
pressure and rapid, weak pulse) he was given
5 gm albumin diluted to 100 ml with lactated
Ringer's solution. Because of anticipated ven-
tilatory problems, he was maintained on a
volume-controlled ventilator for 24 hours post-
operatively. During this time he showed ob-
vious signs of hypotonic fluid overload (water
intoxication) despite having received 52 mEq
sodium during operation, the largest intraop-
erative administration of sodium in the series.
(Signs of water overload include rapid, full
pulse, salivation, full fontanelles, copious di-
uresis, and "fingerprinting" on the forehead.
This last, valuable, sign indicates a hypotonic
interstitial-fluid overload and can be differen-
tiated from the usual pitting edema resulting
from isotonic interstitial overload. The sign
usually is elicited on the forehead and the
sternum, although in this case surgical
dressings precluded the latter.)

In Neonates 26 through 36, the average in-
traoperative fluid intake was 50 ml, with 8
mEq of sodium.

Of the 36 neonates, only four received
blood intraoperatively in addition to the mean
volume requirements of 8 ml/kg/hr of saline
solution. Neonate 4, a 2.6-kg infant under-
going repair of a meningomyelocele, lost 100
ml of blood and received 70 ml as replace-
ment; Neonate 6, a 2.3-kg premature infant
with meconium ileus and cystic fibrosis, re-
ceived 20 ml for a loss of 25 ml; Neonate 15,
a 3.3-kg infant with intestinal malrotation,
lost 30 ml and had 25 ml as replacement; Neo-
nate 19, a 2.5-kg infant with meconium ileus,
had a 50-ml loss and received a replacement
of 60 ml.

Discussion
For many reasons, there have been miscon-
ceptions and confusion about intraoperative
administration of fluid and electrolytes to the
newborn infant. Various yardsticks have been
recommended, as illustrated in a symposium
in 1959,41 in which eight different techniques
for fluid administration were suggested.

One approach is to use neonatal body
weight as a percentage of adult body weight,
but there are defects in this system. This
formula does not take into account reduced
glomerular filtration rate or the apparent
decreased concentrating ability of the neonatal
kidney. In addition, body water comprises a greater percentage of body weight in the infant than in the adult, and there is a more rapid turnover of water. Since the metabolic rate per kilogram of body weight in the infant is about three times that of the adult, the water requirements per kilogram of body weight are greater. For both infants and adults, the lean body mass contains 73 per cent water. However, the total body water of the lean adult male is considered to be 60 per cent of body weight, a third distributed in extracellular fluids and two-thirds intracellularly. By comparison, the body water of the newborn approaches 80 per cent of body weight, divided almost equally between the extracellular and intracellular compartments.

A comparison of kidney function in the adult and that in the neonate on the basis of percentages of extracellular fluid is valid since functional maturity of the kidney is achieved before the end of the first month of life. An important exception is that the neonatal kidney will continue to excrete sodium despite hypotension.

In neonates 26 through 36, mean daily intravenous therapy consisted of 240 ml containing 10.5 mEq sodium. The serum sodium on the first postoperative day averaged 136 mEq/l (range 130–142 mEq/l), a mean decrease in subsequent daily determinations of 4 mEq/l. Average daily urinary volume was 140 ml, with a specific gravity of 1.012, containing sodium, 7.3 mEq, potassium, 6.4 mEq, and chloride 5 mEq. Nine patients in this study had definite hypotension below 130 mEq/l. Two of these, listed in table 2, had mean urinary sodium concentrations of 8.0 and 5.5 mg daily. These findings bolster our opinion that the neonatal kidney lacks the ability to retain sodium despite hypotension, and that fluid therapy during major surgical operations on neonates should include sodium administration.

The average electrolyte excretion in the urine of this group averaged 460 mOsm, indicating a concentrating ability compared with a normal extracellular fluid value of approximately 280 mOsm/l. The newborn infant operated upon and maintained on salt-free liquid may develop severe changes resulting from salt loss and water overload. The quantity of electrolytes excreted in urine indicates that the neonatal kidney does have the ability to concentrate urine. The kidney of the normal newborn infant usually does not concentrate urine, simply because there is a brisk diuresis, representing the normal response to a normally large extracellular fluid volume. All ill neonate who has hypohydration and fever can produce urine with a specific gravity as high as 1.030, with return to the usual range after fever has subsided and adequate fluid intake is re-established.

In adults, a loss of salt-containing extracellular fluid from the circulation resulting from tissue trauma, excess blood loss, or hemorrhagic shock has been shown by isotope measurements (in the early equilibration stage). Excretion of salt in the urine of the adult diminishes greatly under these circumstances. It is common practice to administer a balanced salt solution (the constituents similar to plasma but without protein) to adults during anesthesia to replace that which is translocated from the circulation in the body. We feel that extracellular fluid also becomes translocated in neonates undergoing major operations with tissue trauma, and that these patients need to have salt replacement to compensate for losses. In addition, we have shown that urinary sodium loss continues in the neonate.

In minor surgery associated with little tissue trauma or blood loss in the neonate there is less indication for fluid replacement of any kind. Because of the relative abundance of extracellular fluid in the neonate, minor dis-
turbances of salt and fluid balance are rather easily compensated.

Operations on these 36 neonates were done for the following conditions, all of which we classify as major procedures necessitating fluid administration: duodenal atresia, six patients; intestinal malrotation, five; small-intestinal atresia or volvulus, five; omphalocele, three; imperforate anus, three; meningocele, two; tracheoesophageal fistula, two; meconium ileus, two; and one patient each, the Pierre-Robin syndrome, teratoma of the tongue, colostomy, lung bleb, cystic kidney, esophageal atresia, diaphragmatic hernia, and upper gastrointestinal bleeding. For these we believed there were compelling indications for fluid and electrolyte administration.

References