The Electroencephalographic Pattern during Anesthesia with Éthrane:
Effects of Depth of Anesthesia, P_{ACO_2}, and Nitrous Oxide

John L. Neigh, M.D.,* J. Kent Garman, M.D.,†
James R. Harp, M.D.*

The EEG patterns of increasing depths of Éthrane–O_2 anesthesia and the alterations in the patterns produced by changing P_{ACO_2} and by addition of 60 per cent nitrous oxide have been evaluated in 30 individuals. Increasing depth of anesthesia was characterized by the appearance of high-voltage spikes, with the subsequent development of spike waves and burst suppression. Maximum depth was marked by a predominance of spike waves and burst suppression. The anesthetic depth and P_{ACO_2} at which changes occurred have been defined. With elevation of P_{ACO_2} indices of cerebral irritability appeared to be reduced, while reduction of P_{ACO_2} increased their occurrence. The greatest CO2 effect was seen at inspired Éthrane concentrations of 2.5 per cent or more. The addition of nitrous oxide did not alter the predominant EEG patterns. (Key words: Electroencephalogram; Nitrous oxide; Éthrane; Carbon dioxide.)

Clinical studies of Éthrane‡ (1,1,2-trifluoro-2-chloroethyl difluoromethyl ether) have indicated that the agent has merit because of ease of administration, a high degree of patient acceptance, stability of cardiac rhythm, and the ability to produce excellent muscle relaxation. Preliminary data show that the compound undergoes limited biodegradation. The rare occurrence of abnormal motor movements and occasional electroencephalographic (EEG) evidence of cerebral irritability during Éthrane anesthesia have caused concern. These findings have been most

* Assistant Professor of Anesthesia.
† Assistant Instructor in Anesthesia.
‡ Received from the School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104. Accepted for publication June 22, 1971. Supported in part by USPHS Research Training Grant 5-T1-GM-215-13 and USPHS Research Grant 5-P01-GM-15680-04 from the National Institute of General Medical Sciences, and by Ohio Medical Products, a Division of Air Reduction Company, Inc.

Methods

Informed consent was obtained from all individuals. Patients agreed to the use of Éthrane during elective surgery, and anesthetic and P_{ACO_2} levels were selected according to standard anesthetic practices. Healthy subjects agreed to the use of Éthrane over a wider range of anesthetic doses and P_{ACO_2} levels and accepted the possibility of gross seizure activity. Data was gathered from two groups, 21 individuals (11 healthy subjects and 10 patients) not receiving added nitrous oxide (Group I), and nine patients to whom nitrous oxide was administered in addition to Éthrane (Group II).

Premedication for all individuals consisted of atropine, 0.5 mg iv or im, 15 to 90 minutes before anesthesia. Anesthesia was induced with Éthrane–O_2 or Éthrane-nitrous oxide–O_2. Tracheal intubation was accomplished within 10 minutes without succinylcholine in 15 individuals and with succinylcholine, 60–100
mg iv, in 15 individuals. Nitrous oxide was then discontinued. In Group II nitrous oxide was later added. Seventy per cent of the individuals received d-tubocurarine (mean dose 19 mg) during light anesthesia to prevent movement for experimental purposes and to provide adequate muscle relaxation.

Éthane was administered with a Drager vaporizer, Copper Kettle, or Éthane vaporizer manufactured by Cyprane Ltd., in either a nonrebreathing or a circle system with a flow greater than 5 L/min. Constant minute ventilation was maintained by a mechanical ventilator at greater-than-normal minute ventilation to produce the lowest \(P_{aco_2} \) desired. Changes in \(P_{aco_2} \) were produced by addition of \(CO_2 \) to the anesthetic system.

Anesthetic concentrations were measured by a Biomedical Gas Chromatograph, model 400, using volumetrically prepared standards. Inspired gas and mixed expired gas were sampled and a stable anesthetic state was considered to exist when the mixed expired concentration was within 85% of the inspired concentration. Éthane concentrations reported are the inspired values when this stable state existed. Arterial blood gases and \(\text{pH} \) were measured by Instrumentation Laboratory electrodes using procedures and correction factors described elsewhere.⁷ Steady-state \(P_{aco_2} \) was achieved by end-tidal monitoring, with a period of at least 15 minutes of stable \(CO_2 \) in the healthy subjects and a minimum equilibration period of 30 minutes following a \(CO_2 \) change in patients.

The EEG was recorded with a Grass Model...
50 polygraph using uni- or bilateral frontoparietal leads in patients and with a Grass Model G electroencephalograph using six leads in healthy subjects.

GROUP I

Of the subjects in Group I, eight were maintained at a selected constant PaCO₂ and were exposed to a variety of stable anesthetic states of Éthrane. Nine were maintained at a selected constant Éthrane concentration and PaCO₂ was varied. The other four were studied with both: a selected constant PaCO₂ with variation in stable Éthrane concentrations was followed by a selected stable Éthrane concentration and varied PaCO₂.

GROUP II

Following Éthrane-O₂ anesthesia, EEG, anesthetic concentration and PaCO₂ were determined. Nitrous oxide, 3 liters, and oxygen, 2 liters, were then added to the same Éthrane concentration at the same PaCO₂ for 20 minutes before EEG, anesthetic concentration, and PaCO₂ were again measured.

Results

GROUP I

Increasing the depth of Éthrane-oxygen was associated with a characteristic change in the EEG. Figure 1 shows the pattern of the change in one subject at PaCO₂ 35-39 torr. As depth increased, spikes (greater than 100 μV) appeared. With further increases in depth, spike waves (a spike followed by a slow wave lasting as long as a second) occurred, and periods of burst suppression developed (electrical silence one second in duration or longer). Maximum depth was associated with a predominance of spike waves and burst suppression.

A one-minute segment of the EEG that indicated maximal irritability at a given Éthrane concentration and PaCO₂ was analyzed for the presence or absence of spike forms of 100 μV or greater and burst suppression lasting a second or longer. Figure 2 shows the Éthrane concentration and PaCO₂ at which one or more spike forms during the one-minute period were observed. Three zones can be identified, i.e., a spike-free area where all the records showed no spikes, a transition area, and a spike-present area where spikes were observed under all conditions of Éthrane and PaCO₂. The lines, drawn by eye, separate the zones and indicate the increasing occurrence of spikes with increasing anesthetic depth and decreasing PaCO₂.

The occurrence of burst suppression is shown in figure 3. A similar pattern of three

Fig. 2. Spikes of 100 μV or more in 86 observations in 21 individuals. Open circles indicate no spike forms. Closed circles indicate one or more spike forms.
zones was found. Higher Êthracine concentrations were needed to produce suppression and PaCO₂ effect was minimal, as indicated by the lesser slopes of the lines in figure 3, compared with those in figure 2.

In an attempt at quantification, the frequencies of spikes and spike waves and the percentages of the one-minute segments occupied by burst suppression were determined in the 29 records made during normocarbia (PaCO₂ 35–44 torr, fig. 4). As mean Êthracine concentration increased, the frequency of spikes increased, then decreased, with a greater frequency of spike waves and longer isoelectric periods.

In the 16 records made during hypercarbia (PaCO₂ 45 torr or more) cerebral irritability appeared to be reduced. At mean inspired Êthracine concentrations of 1.82 and 2.25 per cent, spikes, spike waves and burst suppression did not occur. At a mean inspired Êthracine concentration of 2.6 per cent, the frequency of spikes was 1/min, with neither spike waves nor burst suppression; at a mean inspired Êthracine concentration of 3.32 per cent the frequencies of spikes and spike waves were 11.4 and 6.4/min, respectively, and burst suppression occupied 27 per cent of the EEG. Reference to the normocarbic values in figure 4 shows higher frequencies of spikes and spike waves of 7.5 and 3.5/min and a duration of burst suppression of 12 per cent at a mean inspired Êthracine concentration of 2.62 per cent. The normocarbic values at a mean inspired Êthracine concentration of 3.34 per cent were: spikes, 5.4/min; spike waves 11.0/min; burst suppression 58 per cent.

During hypoxia (PaO₂ 31 torr or less) cerebral irritability appeared to be increased. For example, in 11 observations made at PaO₂ 24 torr or less and a mean inspired Êthracine concentration of 2.6 per cent, the frequency of spikes was 20/min, the frequency of spike waves was 14/min, and the duration of burst suppression was 25 per cent. At a mean inspired Êthracine concentration of 3.36 per cent the frequency of spikes was reduced to 9/min, the frequency of spike waves increased to 26/min, and isoelectric periods occupied 67 per cent of the record (again, see fig. 4 for comparison).

The CO₂ effect on the EEG is demonstrated in another way in figure 5, where reduction in mean PaCO₂ within an Êthracine range of 2.5–2.9 per cent in 26 observations produced increased frequencies of spikes and spike waves and increased the amount of suppression. With inspired Êthracine concentrations of 3 per cent or more, the frequency of spikes decreased but the frequency of spike waves and duration of
burst suppression increased with reduction of mean P_{aCO_2}. Little P_{aCO_2} effect was seen at Ethane concentrations below 2.5 per cent.

Group II

The effects of addition of 60 per cent nitrous oxide to steady-state Ethane at constant P_{aCO_2} over an anesthetic range of 1.5-3.4 per cent and a P_{aCO_2} range of 21-32 torr were evaluated. Prior to nitrous oxide, the EEG pattern was one of light anesthesia in two subjects, spikes without spike waves or suppression in two subjects, and spike waves and suppression in five subjects. In none of these test circumstances did the addition of nitrous oxide alter the predominant EEG pattern.

Discussion

Ethane can produce profound general anesthesia, as well as EEG patterns and occasional motor movements interpreted as representing cerebral cortical irritability. In this respect it differs from all other clinically used inhalational anesthetics studied to date. Like other halogenated ethers, during light anesthesia (Fig. 1) Ethane has an EEG pattern characterized by frequencies higher than those seen during the administration of diethyl ether and cyclopropane. With methoxyflurane, for example, high-frequency activity may be present as depth of anesthesia increases, but spike forms are not seen. Furthermore, burst suppression appears only at great depths of anesthesia with other halogenated agents. In contrast, spike forms and isoelectric periods are not uncommon with Ethane under clinical conditions. (MAC for Ethane-O2 is approximately 1.68 per cent.) The data indicate that anesthetic depth has more influence than low P_{aCO_2} in causing the abnormal EEG, although the latter does seem to exert an effect.

We believe that the cerebral irritability that occurs with Ethane does not pose major problems for the clinician, for the following...
reasons. First, studies of cerebral blood flow, cerebral metabolic rate, and patterns of cerebral carbohydrate metabolism during and after deep ethane anesthesia in man have failed to reveal evidence of cerebral hypoxia. Second, behavioral patterns in the immediate and delayed (7–14 day) postoperative or poststudy period have resembled those seen with other inhalational anesthetics. Third, the incidence of abnormal movements in the reported clinical series is low. In this study no movements were observed in nonanurized individuals, nor did a multiple-spike seizure pattern occur in the EEG. Fourth, the EEG pattern considered to be indicative of cerebral irritability can be rapidly replaced with a more normal tracing by a reduction in depth of anesthesia.

Anesthetic depth and the modifying effects of PaCO2 may be readily evaluated by EEG monitoring during ethane anesthesia. This will facilitate the changes in inspired concentration and ventilation necessary to protect against significant cerebral irritability.

References

14. Gion H, Saidman LJ: Personal communication
16. James FM: Personal communication