General Anesthesia for Bronchofiberscopy

ASHIQ H. TAIHB, M.D.*

Recently, a new flexible fiberoptic bronchoscope, the "bronchofiberscope" has become available and has added new dimensions to the usefulness of bronchoscopy.1,2 The Olympus BF Type 5B is a flexible tube 5 mm in diameter with a working length of 56 cm. The tip is manipulated by remote control from the proximal portion of the bronchoscope and can be directed into airways as small as subsegmental bronchi, including those in the upper lobes. Direct visualization, photography, brush biopsy, sampling bronchial secretions, and aspiration of mucus in areas inaccessible to the conventional rigid bronchoscope are possible. Ordinarily, the instrument is introduced through a rigid "trachea tube," a rigid bronchoscope or a nasopharyngeal airway.2,3 These methods are satisfactory for patients breathing spontaneously, but controlled ventilation is difficult or impossible. A simple technique that allows ventilatory control and administration of general anesthesia is presented.

METHODS

A right-angle anesthetic elbow connector with a suction channel is needed for this technique. A suction channel can be built onto an ordinary adapter mask elbow, or the commercially-available Roenestine-Woods curved connector with suction nipple, Magill suction T-piece connector, or Bird tracheostomy adapter with suction arm, etc., can be used. A rubber diaphragm cut from a piece of glove or Penrose drain is taped over the suction channel and a 3-5-mm slit is made at its center. The connector is attached to the Y-piece inhaler assembly of the anesthesia machine.

While almost any general anesthesia technique can be used, the author uses thiopental, Innovar, or diazepam for induction and a 60 per cent N2O-O2 mixture and succinylcholine for maintenance of anesthesia and relaxation. In patients with marginal pulmonary function more than 50 per cent oxygen is used. The oropharynx, larynx, and upper trachea are thoroughly sprayed with a topical anesthetic and the patient is intubated with as large an endotracheal tube as possible without causing trauma. The bronchofiberscope is introduced into the endotracheal tube through the suction piece of the connector while ventilation is maintained (fig. 1). To facilitate introduction of the instrument, the rubber diaphragm is initially retracted and then allowed to contract to maintain a reasonably tight seal. Small air leaks occurring around the shaft of the bronchofiberscope are easily compensated for by increasing the flow rate and closing the pop-off valve of the anesthesia machine. Pulse, blood pressure, and electrocardiogram are monitored. At the end of the procedure, when spontaneous breathing and reflex activity return, the trachea is extubated.

From July 1970 to March 1972, this technique of general anesthesia for bronchofiberscopy was used for 115 patients. From 36 of these patients, whose ages ranged from 22 to 65 years (mean 42 years), arterial blood samples were taken through a teflon cannula placed in the radial artery. Samples were obtained prior to induction of anesthesia, immediately before introduction of the bronchoscope, several times during bronchoscopy, immediately afterwards, and 30 minutes after termination of the procedure. Blood-gas and acid-base values were measured using appropriate pH, carbon dioxide, and oxygen electrodes. When both the rigid bronchoscope and the bronchofiberscope were needed, the Sanders technique of ventilation was employed; the rigid bronchoscope was inserted first and, while ventilation was maintained with Sanders’ Venturi injector, the bronchofiberscope was introduced through it.

*Assistant Professor, Department of Anesthesiology, Charity Hospital of Louisiana at New Orleans and the Tulane University School of Medicine, New Orleans, Louisiana.
Fig. 1. Bronchoscopy introduced into the endotracheal tube via the suction channel of the elbow connector while controlled ventilation is possible through connecting tubings.

In 30 additional patients on mechanical ventilators in the Recovery Room or Intensive Care Units, bronchoscopy for therapeutic purposes was performed, using topical anesthesia. Some of these patients were in respiratory failure. The connector with suction channel was interposed between the mechanical ventilator and endotracheal or tracheostomy tube, and bronchoscopy carried out while mechanical ventilation was maintained.

RESULTS

Excellent conditions for endoscopy were provided in all patients. Recovery from anesthesia occurred promptly after the procedure was completed, and the patients were able to cough vigorously. Results of the arterial blood-gas studies are summarized in figure 2. Carbon dioxide tension and pH remained within normal limits throughout bronchoscopy, and oxygen tension remained well above 130 mm Hg at an inspired oxygen concentration of 40 per cent. In patients on mechanical ventilators, arterial blood-gas and acid-base measurements taken on numerous occasions also demonstrated the adequacy of ventilation during bronchoscopy with this technique.

An increase in airway resistance occurred after insertion of the bronchoscope into the endotracheal tube. However, this was minimal and of no major consequence when ventilation was assisted or controlled and a tube larger than 34 French gauge or 8.5 mm internal diameter was used. The technique could not be used with tubes smaller than 32 French or 8 mm internal diameter because resistance to airflow was excessive and ventilation became impaired. Olympus BF Types 4B and 3A are 4 mm and 3.5 mm in diameter, respectively, and can be passed through smaller endotracheal tubes.

DISCUSSION

Comparable techniques have been suggested by Berkowitz and Secher and by Renz et al. With solution of the major problem of inadequate ventilation, uninterrupted examination for as long as needed and as often as necessary can be accomplished without risk of hypoxia or hypoventilation. General anesthesia be-
comes safe, and may indeed be a method of
choice for many patients. Utilization of the
bronchofiberscope permits unhurried careful
catheterization of segmental and subsegmental
bronchi, fiberoptics-guided catheterization, and
precise positioning of the catheter for selective
cultures, biopsy and bronchography. The
method has been very valuable in teaching
situations when residents were learning broncho-
fiberscopy and familiarizing themselves
with tracheobronchial anatomy.

Bedside bronchofiberscopy was found to be
an extremely helpful therapeutic adjunct for
patients in postsurgical and respiratory care
units who needed aspiration of secretions or
mucous plugs. In patients whose tracheas
were not intubated, a soft rubber nasophary-
geal airway was used to facilitate introduction
of the bronchofiberscope into the trachea.
Oxygen was administered through a naso-
pharyngeal airway or catheter placed in the
other nostril. Even thick secretions could be
removed through the bronchofiberscope by
repeated lavage with saline and acetylcystine
solution and frequent suctioning.

REFERENCES
1. Ikeda S: Flexible bronchofiberscope. Keio J
 Med 17:1-10, 1968
 Rhinol Laryngol 79:916-23, 1970
3. Wanner A, Zigelboim A, Sackner MA: Naso-
 pharyngeal airway: A facilitated access to the
4. Wanner A, Amikam B, Sackner MA: A techni-
 que for bedside bronchofiberscopy. Chest
 61:287-88, 1972
5. Literature Accompanying the Olympus Bron-
 chofiberscope. Olympus Corporation of
 America, New Hyde Park, New York
 for bronchoscopy: The use of Sanders bron-
 choscopic attachment. Ann Thorac Surg 8:
 348-354, 1969
7. Berkowitz A, Seelzer PH: General anesthesia for
 bronchoscopy. Communications in Anes-
 thesiology 2:11, 1972
 oscopy in respiratory failure (letter to the