deadspace effect of a large shunt (Q_s/Q_T), etc. he will never use V_p/V_T as an aid to patient care.

Dr. Atkin's mathematics are more logically correct, and seem to represent the facts more realistically. However, we processed our data by computer analysis using Dr. Atkin's equation and found the regression equation $y = 1.094x + 0.003$ and a correlation coefficient r of 0.988. We reported the regression equation $y = 0.933x + 0.044$ and an r of 0.953. The difference between the regression lines is not statistically significant ($P > 0.1$).

The difference between the two equations is zero at V_p/V_T's of 0.33 and 0.67. As respiratory failure is said to occur at V_p/V_T's greater than 0.60, it becomes unnecessary to use a more complex expression. Indeed, our equation can often be used mentally, as V_p/V_T relates directly to V_{en} and p_{aco}, whereas, in Dr. Atkin's equation, it is inversely related, making mental estimation more difficult. The absurd results which we admitted in the original article) when V_p/V_T becomes greater than 0.7 are not of great clinical significance when the matter is to differentiate between a V_p/V_T of 0.8 or 0.9, the patient being in a very serious condition either way.

It remains that Dr. Atkin's equation and ours compare surprisingly closely to Enghoff's equation. However, our equation should be tested on a larger number of patients. Dr. Atkin has not published any data yet.

Paul R. Levesque, M.D.
Tufts University School of Medicine
New England Medical Center Hospital
Boston, Massachusetts

Henry Rosenberg, M.D.
Department of Anesthesia
Hospital of the University of Pennsylvania
Philadelphia, Pennsylvania 19104

REFERENCES

(Accepted for publication March 3, 1975.)

Corrections, Program for Calculator

To the Editor:—I believe one of the equations in the recent paper of Ruiz et al. contains an error of at least theoretic, if not practical, importance.

Equation 2, as written, implies that a decrease in pH (as reported at 37°C) will cause an increase in the temperature coefficient of pH. Burton and Adamsons have shown the opposite to be true. In the absence of a metabolic derangement in acid–base balance, a decline in reported pH causes a decrease in the temperature coefficient of pH. The Ruiz algorithm also fails to take into account the effect of base excess or deficit, which may be considerable. For example, at a reported pH 7.2 the correction factor derived from equation 2 of Ruiz is 0.0159 pH units per degree change in temperature. While this is approximately correct, if there were a severe metabolic acidosis, it might be very misleading, since in the presence of even moderate metabolic alkalosis at this pH the temperature coefficient will fall below 0.0140.

Aaron F. Kopman, M.D.
Attending Anesthesiologist
Long Island Jewish Hillside Medical Center
New Hyde Park, New York 11040

REFERENCES

(Accepted for publication March 3, 1975.)