stetric management of Bantu parturients differed from that of Caucasians, and had evolved gradually from experience of more than 25,000 cesarean sections over 10 years performed in the hurly-burly background of a busy African hospital. In short, to avoid an unacceptable incidence of hypovolemia and anemia, we found it prudent to adopt a fairly rigid regimen according to which blood was transfused to match a visual estimate of that lost. This may reflect some disturbance of hemodynamic adjustment in the pregnant Bantu woman similar to that reported to occur in small-body-mass or eclamptic individuals. \(^1\) In practice, this meant that Bantu patients received an average of about 1,000 ml of blood during operative delivery if they were to leave the hospital with a hemoglobin level of more than 10 g/100 ml.

Finally, it is germane when weighing the risk/benefit ratio of blood transfusion to consider the quality of stored blood available. British and South African anesthetists are fortunate in being able to give blood with little risk of serious side effect.

A. J. COLEMAN, M.B.
Consultant Anesthetist
Northwick Park Hospital
Watford Road
Harrow, Middlesex HA13UJ England

REFERENCE

1. Prichard JA: Blood volume changes during pregnancy. ANESTHESIOLOGY 26:393-399, 1965

(Accepted for publication October 20, 1975.)

Data Added to Published Report

To the Editor:—In rereading our article in the July issue (Muldoon SM, Vanhoutte PM, Lorenz RR, Van Dyke BA: Venomotor changes caused by halothane acting on the sympathetic nerves, ANESTHESIOLOGY 43:41-48, 1975), we noticed that table 1 is incomplete to the point that it may not be totally clear to the readers.

The published control value applies only to the 0.5 per cent halothane group. The control values for the 1, 2, and 3 per cent halothane groups were unfortunately left out by us. The absence of these values would imply that the control tension values for all groups were the same as the control tension for the 0.5 per cent halothane group, which is not true. We consider it important to supply these values, because without them the reader cannot see how we calculated significant differences from control values. Also, the tension stated for the 0.5 per cent halothane group should read 2.53 ± 0.19 g instead of 2.47 ± 0.64 g as listed. The complete data are shown in the attached table 1.

SHEILA M. MULDOON, M.D.
Department of Anesthesiology
Mayo Clinic
Rochester, Minnesota 55901

(Accepted for publication October 24, 1975.)

Table 1. Effect of Halothane on Responses of Saphenous-vein Strips to 2-Hz Electrical Stimulation (Mean ± SE)

<table>
<thead>
<tr>
<th>Halothane</th>
<th>In anesthetizing Mixture</th>
<th>In Organ Bath (mg/100 ml)</th>
<th>Vein Strips per group</th>
<th>Response: Tension Increase (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per Cent</td>
<td></td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>0.5</td>
<td>2.70 ± 0.20</td>
<td>3</td>
<td></td>
<td>2.90 ± 0.20</td>
</tr>
<tr>
<td>1.0</td>
<td>5.38 ± 0.28</td>
<td>6</td>
<td></td>
<td>3.05 ± 0.86</td>
</tr>
<tr>
<td>2.0</td>
<td>10.81 ± 0.58</td>
<td>6</td>
<td></td>
<td>3.06 ± 0.87</td>
</tr>
<tr>
<td>3.0</td>
<td>15.97 ± 0.32</td>
<td>6</td>
<td></td>
<td>3.14 ± 0.89</td>
</tr>
</tbody>
</table>

* Difference from control is significant, P < 0.05.
† Difference from control is significant, P < 0.01.