Correspondence

Percutaneous Sample for Blood-gas Analysis: Arterial or Venous Blood?

To the Editor: —Although indwelling arterial catheters have become popular for obtaining blood for gas analysis, it is still necessary at times to rely upon a single percutaneous needle puncture for obtaining blood for this purpose. Many times, when unexpected results are obtained with the latter method, the question is raised: "Was the sample from an artery or from a vein?" To distinguish between an artery and vein, a standard approach has been to use a large-gauge needle and a well-lubricated, heparinized glass syringe to let the pressure within the artery fill the syringe. This method is unsatisfactory because of the large-gauge needle necessary to fill the syringe rapidly, and the expense and bother of maintaining either reusable or disposable glass syringes. The use of small-gauge needles and plastic syringes has certain advantages, but it requires the operator to aspirate the sample, thus destroying the information as to whether the syringe would fill spontaneously or not.

I have found a method that eliminates most of the uncertainty about whether the aspirated sample is arterial or venous when 25- or 26-gauge needles and 3-ml plastic barrel syringes are used. The needle and syringe are heparinized in standard fashion, expelling all heparin except that which remains in the dead space. Following arterial puncture, the required volume of blood is aspirated. Following aspiration, the bevel of the needle is allowed to remain in the lumen of the artery for 2–3 sec. Then the syringe and needle are quickly withdrawn and attention is turned to the bevel of the needle. When there is a small drop of blood hanging from the bevel of the needle, the sample has been obtained from an artery. When there is no drop of blood hanging from the bevel of the needle, the sample may have been arterial, or it may have been venous.

The explanation for this test is as follows. During the time that the bevel of the needle is in the artery after aspiration has been completed, the pressure inside the syringe approaches mean arterial pressure, causing the rubber diaphragm on the plunger to deform slightly. As the needle is withdrawn from the artery, the pressure inside the syringe approaches atmospheric. The diaphragm is allowed to resume a relaxed position, decreasing the volume of the syringe slightly, which in turn causes a small drop of blood to be expelled from the tip of the needle. When the bevel has been in a vein, the diaphragm will not be deformed, and no drop of blood will be seen. The crossover occurs at 40–60 torr. An occasional false-negative result occurs when the bevel of the needle is inadvertently displaced from the lumen of the artery during pressure equilibration. It is conceivable that a false-positive result would be obtained if the pressure in the vein were more than 40 torr. I have found this test extremely useful.

Franklin L. Scamin, M.D.
Assistant Professor of Anesthesiology
Department of Anesthesia
University of Iowa Hospitals and Clinics
The University of Iowa
Iowa City, Iowa 52242

(Accepted for publication May 15, 1979.)

Monitor of Respiratory Excursions

To the Editor: —Monitoring of respirations of infants and children undergoing radiation therapy has not been satisfactory, in our opinion. As the anesthesiologist cannot remain in the treatment room during radiation therapy, he must observe the patient through a television monitor. Because of poor imaging, the respiratory excursions cannot be observed clearly. Although the time the anesthesiologist leaves the patient unattended in the treatment room does not exceed 2–3 min, the inability to monitor respiration is a cause of anxiety. We designed a simple light box containing a battery, light and switch (fig. 1), which is placed on the patient’s abdomen or chest. With the light switched on, the upward and downward movement of the light bulb on the box is very clearly seen on the television monitor.