Enflurane Suppression of Complex Ventricular Dysrhythmias

MYLES SMITH, M.B., B.S., F.F.A.R.C.S.,* DONALD KROLL, M.D., PH.D.,† JAMES BRECKENRIDGE, M.D.‡

Although disturbances of cardiac rhythm occur commonly under general anesthesia, the incidence of cardiac rhythm disturbances may be lower with enflurane anesthesia than with halothane anesthesia.1–3 Enflurane also results in less myocardial sensitization to the effects of exogenous catecholamines than halothane.4,5 Although these data support the conclusion that enflurane is less dysrhythmogenic than halothane, whether or not this effect can truly be termed an antidysrhythmic effect is debatable. The usual usage of this term implies activity in suppressing dysrhythmias, not simply causing fewer dysrhythmias. It is believed, however, that the following case report demonstrates a possible antidysrhythmic effect of enflurane.

Report of a Case

A 57-year-old man weighing 65.9 kg was scheduled for a vagotomy and antrectomy. He had a one-year history of increasing post-prandial nausea and vomiting. Eight years earlier, a peptic ulcer, hiatal hernia, and esophagitis were diagnosed following a hematemesis. He responded well to medical treatment at that time.

The relevant past medical history consisted of an episode of palpitations and exertional dyspnea one year previously. An electrocardiogram showed sinus rhythm and left anterior fascicular block. The patient was started on 100 mg disopyramide, t.i.d., and the palpitations and dyspnea ceased. The chest roentgenogram taken at the same time revealed a calcified nodule in the left lower lobe close to the diaphragm. In view of a history of prolonged exposure to asbestos, the diagnosis of asbestosis was made. There was no historical or physical evidence suggesting ischemic heart disease.

Three weeks prior to surgery his disopyramide was discontinued as it was thought to be contributing to his nausea and vomiting. He was started on 200 mg cinemet, t.i.d., and 10 mg prochlorperazine, p.r.n., and his nausea and vomiting lessened.

Laboratory data including hemoglobin, hematocrit, white cell count, coagulation screen, serum electrolytes, and liver function tests, were all within normal limits. The chest roentgenogram showed no further changes. Electrocardiography again showed sinus rhythm and left anterior fascicular block. However, in view of the history of palpitations and the clinical finding of an irregular pulse, the cardiac rhythm was evaluated by Holter monitoring. Over a 20-h period there were 5,099 premature ventricular beats, including rare to frequent multifocal premature contractions, rare episodes of bigeminy, two episodes of ventricular tachycardia, and a small number (37) of premature atrial contractions. An episode of "quadrageminy" was also noticed which may in fact have represented a parasystolic mechanism.

Diazepam, 10 mg, was given orally, 1.5 h preoperatively. He was also given a bolus of 125 mg lidocaine, followed by an infusion of lidocaine at the rate of 2 mg/min. Despite this, the preinduction electrocardiogram showed 10–15 premature ventricular contractions (PVCs) per minute. The lidocaine was discontinued since it was thought to be ineffective.

Anesthesia was induced with 250 μg fentanyl, and 250 mg thiopental sodium, intravenously. Pancuronium, 7 mg, was administered intravenously and the patient was ventilated via a mask with 50 percent nitrous oxide and 2 percent enflurane until paralysis was established. After spraying the cords with 4 ml 5 percent lidocaine, the trachea was intubated. Monitoring consisted of an EKG incorporating a V5 electrode, an esophageal stethoscope, and a pharyngomanometer attached to the arm. After ventilation was controlled, the frequency of PVCs decreased steadily, so that at the time of endotracheal intubation less than two per minute were observed.

Anesthesia was maintained with 70 percent nitrous oxide and 0.5 percent enflurane. No further PVCs were seen for 60 min. After this time the enflurane was discontinued because the blood pressure had fallen to 100/55 mmHg with a heart rate of 85 beats/min; 15 min later the PVCs returned in excess of 10 per minute (fig. 1). There were no signs to suggest decreased depth of anesthesia such as significant tachycardia or hypertension, sweating, or increased pupillary activity. The blood pressure was 110/60 mmHg and heart rate of 80 beats/min. Enflurane, 0.5 percent, was recommenced and within 5 min no PVCs were observed (fig. 1), the blood pressure was stable at 110/60 mmHg with a heart rate of 75 beats/min. The operation proceeded uneventfully. Paralysis was reversed fully with 0.6 mg glycopyrrolate, and 2.5 mg neostigmine. One hundred percent oxygen was administered and the trachea extubated. Soon after extubation, despite breathing on 100 percent oxygen via a mask with apparent adequate ventilation, the PVCs returned at the preoperative frequency. They were treated in the postoperative recovery ward, by a further bolus 75 mg of lidocaine, and an infusion of lidocaine at a rate of 2 mg/min. This was continued for 24 hours and the PVCs were suppressed partially but were not abolished fully. No underlying cardiac disease was discovered to account for the patients ventricular dysrhythmias and he was discharged home nine days postoperatively taking no antidysrhythmic medications.

Discussion

The preoperative Holter monitoring evaluation of this patient demonstrated a wide variety of disturbances in cardiac rhythm. The patients only symptom was intermittent palpitations. The etiology of the dysrhythmias has not been established clearly despite extensive non-invasive evaluation. Initial therapy with lidocaine was
not effective in suppressing ventricular ectopy in this patient. Effective antidysrhythmic therapy with disopyramide could not be resumed until surgical correction of the peptic ulcer disease and delayed gastric emptying because of the exacerbation of his symptoms attributed to this drug. Therefore, it was decided to proceed with surgery despite the high frequency of PVCs. The administration of enflurane and induction of general anesthesia restored a normal sinus rhythm. Pancuronium was chosen to avoid bradycardia and minimize the rate related slowing of AV nodal conduction associated with enflurane in the hope of facilitating overdrive suppression of ectopic beats. Although, the beneficial effects of other drugs cannot be ruled out completely, the return of ventricular ectopy following the discontinuation of enflurane argues against a major contributing factor of the other drugs administered.

In this patient enflurane appears to have suppressed ventricular dysrhythmias which may have arisen from two different mechanisms. The first type of ectopic beat included those beats with a constant coupling interval to the preceding normal sinus beat. The coupling interval of these beats was on the order of 460 ms with a range of 440–480 ms during a run of bigeminy. There was slight variability in the coupling interval at different times during the entire period of Holter monitoring from 380–500 ms but during each run of activity the variability was within 40 ms. When this type of dysrhythmia occurred after discontinuation of enflurane, the coupling interval was prolonged to 600 ms and the dysrhythmia was abolished by further administration of enflurane (fig. 1). Although the reappearance of these dysrhythmias was not related to any significant change in heart rate or blood pressure, a lighting of anesthetic depth or enhanced autonomic activity can not be ruled out with certainty.

The second type of ventricular activity noted in this patient was indicative of a parasystolic focus. This type of activity is suggested by a variable coupling interval of the ectopic to the preceding normal sinus beat, the presence of fusion beats and a relatively constant interectopic interval of just over 1400 ms. After extubation the trachea and the discontinuation of enflurane the parasystolic focus did return although the interectopic interval was on the order of 1860 ms, somewhat prolonged from the interectopic interval noted preoperatively.

Although the cardiac electrophysiologic effects of enflurane have not been evaluated fully, enflurane does suppress both automaticity and conduction. The presence of ventricular ectopic beats occurring with a constant coupling interval to the preceding normal sinus beats suggests that the probable genesis of these dysrhythmias was reentrant in origin. There are two possible mechanisms for parasystolic dysrhythmias. The ectopic focus (with automatic or reentrant impulse origin) may be protected from depolarization by the more proximal propagating wavefront by a unidirectional entrance block. Alternately, the parasystolic focus may represent a concealed latent tachycardia which is protected by its own rapid firing rate which ensures refractoriness to oncoming impulses. In such a case the slow manifest discharge rate is a result of exit block.

Thus, disordered cardiac conduction is required for both of these types of dysrhythmias observed in this patient. The return of normal sinus rhythm following the administration of enflurane provides at least presumptive evidence that the beneficial effect of enflurane in this patient was related to depression of conduction. Depression of cardiac conduction could have led to the abolition of the reentrant pathway resulting in the suppression of the reentrant dysrhythmias, as well as to the formation of exit block leading to the suppression of the parasystolic dysrhythmias. Suppression of abnormal automaticity could also have been a factor in abolishing the parasystole.

Although further controlled studies will be necessary to clarify the direct electrophysiologic effects and possible
indirect autonomic effects of enflurane, we speculate on
the basis of this case report that enflurane may possess
antidysrhythmic activity and that this could possibly be
related to a depression of cardiac conduction.

REFERENCES
1. Reisser LS, Lippmann, M: Ventricular arrhythmias after epi-
nephrine injection in enflurane and in halothane anesthesia.
Anesth and Analg (Cleve) 54:468–470, 1975
2. Williams HD, Law S: Cardiac arrhythmias during coronary-artery
operations with halothane or enflurane anesthesia. ANES-
THESIOLoy 50:551–553, 1979
3. Pratilla MG, Pratillas V, Smith H: Dysrhythmias and enflurane

Anesthesiology
56:150–151, 1982

Use of Two Epidural Catheters to Provide Analgesia of Unblocked Segments in a
Patient with Lumbar Disc Disease

SANDY M. SCHACHNER, M.D.*, AND STEPHEN E. ABRAM, M.D.†

The insertion of lumbar and caudal epidural catheters in the same patient to provide pain relief for labor and
delivery has been described previously.12 In this case, a
second lumbar epidural catheter was inserted to provide
adequate analgesia of unblocked segments for labor and
delivery in a patient with lumbar intervertebral disc dis-
case.

REPORT OF A CASE

A 28-year-old woman (gravida 3, para 0) was admitted in early
labor with ruptured membranes. The past medical history included
a back injury two years previously resulting in damage to the L4–5
intervertebral disc and a chronic right L5 radiculopathy. She frequently
had sharp pain radiating deep to her right hip and down the medial
aspect of her right leg, and numbness of the medial aspect of her foot
and decreased position sense of her right great toe. The numbness and
pain increased as her pregnancy progressed.

Sixteen hours after admission her cervix had dilated to 4–5 cm. At
that time she was complaining of abdominal, low back, and right hip and
leg pain with contractions. A 20-gauge epidural catheter was in-
serted into L2-3 interspace and threaded 5 cm cephalad without dif-
ficulty. After a test dose of 3 ml 1 percent lidocaine, the patient was
placed in the supine position and 11 ml 0.25 percent bupivacaine
was injected. Anesthesia extended superiorly to T7 bilaterally. Anesthesia
extended downward through the sacral segments on the left, but did
not extend below L4 on the right. Uterine contractions were not felt
on the left, but produced deep pain referred to the right hip. Over the
next two hours additional doses of 0.25 percent bupivacaine were
given in an attempt to provide adequate right-sided analgesia. Ten ml
of 0.25 percent bupivacaine were given in the right lateral decubitus
position, 12 ml were given in the sitting position, and 14 ml were given
in the sitting position after withdrawing the catheter 1–2 cm, without
altering the level of analgesia on the right. At this point a second epidural catheter was threaded up 4 cm
through the L4–5 interspace without complication. Eight ml of 0.25
percent bupivacaine injected through this catheter produced profound
analgesia of the unblocked segments including the sacral segments bi-
laterally. Two subsequent doses (6 and 12 ml) given through the lower
catheter over the next 4-h period provided continued complete analgesia
with hypotension to pinprick extending from T7 through the lower
sacral segments bilaterally. Midline episiotomy and outlet forceps de-
elivery of a male infant with an APGAR of 8 and 10 were accomplished
without maternal discomfort. The mother's recovery was uneventful
with no neurologic sequelae.

A follow-up six weeks after delivery revealed a decrease in her symp-
toms of pain and numbness. These were only present occasionally and
appeared to be positional.

DISCUSSION
The presence of unblocked segments during continuous
lumbar epidural analgesia has been reported to occur in
6.7 per cent of patients and to be persistent in 1.5 per
cent.3 This presumably occurs because of failure of the
local anesthetic to reach the unblocked nerve roots in
sufficient concentrations.23 Perhaps epidural adhesions,
scarring or fibrous bands, which result from the healing
process following intervertebral disc injury,4 can interfere
with the spread of local anesthetics in the epidural space.2
Unilateral anesthesia or patchy deficits may, however,
occur in otherwise normal patients or as a result of cath-
ether malposition.2