8. STEPHEN O'DELL: Personal communication. A.H. Robins Co., Richmond, VA, 1981

Anesthesiology
56:473-476, 1982

Relationship of Alveolar-Arterial Oxygen Tension Difference in Diaphragmatic Hernia of the Newborn

JEAN HARRINGTON, M.D.,* RUSSELL C. RAPHAELY, M.D.,† JOHN J. DOWNES, M.D.‡

In congenital diaphragmatic hernia of the newborn, pulmonary hypoplasia and persistent fetal circulation cause acidosis, hypercapnia, and hypoxemia.1-5 The magnitude of the cardiopulmonary shunt, as indicated by the alveolar-arterial oxygen tension difference (A-aDO₂) at an inspired oxygen concentration of 100 per cent (FIO₂ 1.00), usually decreases immediately following reduction of the hernia. Preliminary data suggested that the A-aDO₂ at that time may be an accurate predictor of ultimate outcome.5 If this is true, the A-aDO₂ then may identify those infants at greatest risk of respiratory failure following anesthesia and operation.

METHODS

To delineate the relationship of the A-aDO₂ to survival, we prospectively studied 39 newborns with diaphragmatic hernia. Prior to and during anesthesia and operation we treated the infant's acidemia and hypoxemia with: (1) tracheal intubation, (2) manually controlled hyperventilation at frequencies of 40 to 60 breaths per min and peak inspiratory pressures of 25 to 40 cmH₂O in an effort to achieve a PAO₂ of 25 to 30 mmHg, and (3) intermittent intravenous sodium bicarbonate in doses estimated to restore arterial pH to 7.40. In an effort to minimize barotrauma, we limited peak inspiratory pressures to 40 cmH₂O. Despite these efforts, asphyxia of varying degrees persisted prior to hernia reduction. Under general anesthesia with neuromuscular blockade, at an FIO₂ of 1.00, blood samples were obtained immediately before and after reduction of the hernia. The A-aDO₂ was derived in the conventional manner.6 Samples were collected from indwelling arterial catheters into heparinized syringes, iced, and analyzed within minutes for pH and blood-gas tensions on an Instrumentation Laboratories 113 or 213 System. All values were corrected for temperature, and pH values were converted to hydrogen ion concentrations ([H⁺]) for statistical analysis. Mean values were compared using the conventional student t test for differences.

We were concerned with the influence of the arterial sampling site on the A-aDO₂. Shunting through the ductus arteriosus could contaminate systemic arterial blood with pulmonary arterial blood, and has been observed in infants with diaphragmatic hernia.7 Therefore, we analyzed the effect of the sampling site on gas tensions after reduction of the hernia by comparing values obtained from infants whose right radial or temporal artery were sampled with those infants whose umbilical artery was sampled.

0003-5022/82/0600/0473 $00.70 © The American Society of Anesthesiologists, Inc.
ever, the rise in mean pH and fall in mean PaCO₂ after hernia reduction were significant in both groups (fig. 1).

The mean PaO₂ in survivors rose significantly, whereas an insignificant improvement in mean PaO₂ occurred in non-survivors (fig. 2). Although the response of PaO₂ following reduction of the hernia was strikingly different in survivors and non-survivors, the PaO₂ value may be altered by the PaCO₂. This arterial oxygenation can be more precisely assessed by examining the A-aDO₂ at FIO₂ 1.00. In surviving infants, the post-reduction mean A-aDO₂ of 319 mmHg was significantly less (P < 0.001) than the 562 mmHg observed in the non-surviving infants (fig. 3). All of the non-surviving infants had a post-reduction A-aDO₂ greater than 400 mmHg with the exception of two patients mentioned previously: one infant with trisomy-13 and severe cardiac anomalies; another infant who survived for two years with bronchopulmonary dysplasia before succumbing (fig. 3). All survivors had an A-aDO₂ less than 500 mmHg. An A-aDO₂ between 400 and 500 mmHg represented a zone of uncertain prognosis.

We analyzed the effect of sampling sites on the post-reduction A-aDO₂. When survivors' and non-survivors' data were pooled, no significant difference in mean post-reduction A-aDO₂ values from above (407 ± 42) vs. below (468 ± 33) the ductus could be shown. In surviving infants the mean (±SE) A-aDO₂ of 309 (±23) mmHg (N = 7) sampled from the umbilical artery was not significantly greater than the 247 (±74) mmHg (n = 11) from above the ductus. In non-surviving infants the opposite trend was observed, the mean A-aDO₂ of 551 ± 48 mmHg (N = 7) above the ductus being slightly, but not

RESULTS

The 18 survivors and 21 non-surviving infants had comparable mean (± SE) birthweight (3.31 ± 0.02, 2.88 ± 0.14 kg) and ages at operation 10.8 ± 2.1, 8.4 ± 2.1 h). Two non-surviving infants were not included in the data analysis of figures 1 and 2 because one had trisomy -13 and severe cardiac anomalies and the other survived for two years with bronchopulmonary dysplasia before succumbing. Non-surviving infants were significantly more acidic than survivors (fig. 1), more hypercapnic (fig. 1), and had a lower mean PaO₂ at FIO₂ 1.00 (fig. 2). Immediately following reduction of the hernia, mean arterial pH rose in non-survivors to a mean 7.33, significantly lower than the mean of 7.43 in survivors (fig. 1). This was associated with a decrease in mean PaCO₂ in non-survivors to 47 mmHg, significantly higher than the 32 mmHg observed in survivors. How-
significantly, larger than the 537 (±33) mmHg (N = 14) sampled below the ductus. We conclude that, in this study, sampling site did not affect significantly the mean A-aDO₂ data.

DISCUSSION

Pulmonary hypoplasia previously has been considered the major factor in the mortality of infants with diaphragmatic hernia. Recent observations in the fetal lamb model of diaphragmatic hernia and in the human newborn indicate that high pulmonary vascular resistance, increased pulmonary arteriolar medial thickness, and postnatal interstitial emphysema may play important roles in the progressive hypoxemia and death of these infants. These factors should lead to an increased A-aDO₂ and PaCO₂.

Our observation that the A-aDO₂ from blood sampled above and below the ductus did not differ significantly conflicts with the data of Murdock and Swyer in newborns with congenital diaphragmatic hernia. They found at the time of simultaneous sampling from the right radial and umbilical arteries a significantly higher mean in PaO₂ from the radial artery, although in some infants the difference was negligible. The time of sampling for their study, however, did not correspond to ours, nor were treatment conditions as rigorously controlled. We think that reversal of ductal blood flow to the fetal pattern (pulmonary to aorta) tends to develop hours after hernia reduction, and most likely did not occur at the time of sampling in the infants of our study.

Our infants who failed to survive despite reduction of the hernia and intensive respiratory care manifested significantly greater hypoxemia and respiratory acidosis both before and after reduction of the hernia than did surviving infants. The A-aDO₂ at FiO₂ 1.0 immediately following reduction of the hernia provided the most reliable guide to ultimate prognosis and the need for extraordinary therapy. Two infants with an A-aDO₂ over 400 mmHg who ultimately survived and recovered required high frequency mechanical ventilation (70–100 breaths/min) with neuromuscular blockade to achieve PaCO₂ levels below 30 mmHg with arterial pH above 7.40, catheterization of the pulmonary artery with assessment of pressure and flow, and the use of intravenous tocololine and dopamine to maintain pulmonary blood flow and cardiac output. This experience suggests that increased survival of newborns with congenital diaphragmatic hernia whose post-reduction of A-aDO₂ exceeds 400 mmHg may be facilitated by monitoring of pulmonary artery pressure and flow in conjunction with therapy to reduce pulmonary vascular resistance and improve alveolar gas exchange. Our experience and that of others suggest that such therapy should include high frequency mechanical ventilation and the use of vasodilator and positive inotropic drugs.

In conclusion, survival of full term infants with congenital diaphragmatic hernia but no associated major anomalies seems likely if the post-reduction A-aDO₂ is less than 400 mmHg, undetermined if between 400 to 500 mmHg, and unlikely if greater than 500 mmHg. This early prognostic indicator should enable the clinician to identify those infants most likely to need exceptionally close surveillance, mechanical hyperventilation, and vasoactive drug therapy before irreversible hypoxemia occurs.

REFERENCES

The Fiberoptic Gastroscope for Difficult Endotracheal Intubation

MARK S. SHULMAN, M.D.,* AND MICHAEL TROLLOPE, M.D.†

Several authors have described the successful use of the fiberoptic laryngoscope and bronchoscope for difficult endotracheal intubations.1-3 We report a case of successful endotracheal intubation using a fiberoptic gastroscope after repeated failures with both a fiberoptic bronchoscope and a fiberoptic laryngoscope.

REPORT OF A CASE

A 60-year-old man was scheduled for repair of a gastric volvulus. Anesthesia was induced with 350 mg thiopental, iv, and 80 mg succinylcholine, iv, to facilitate endotracheal intubation. Multiple attempts at endotracheal intubation with various laryngoscope blades were unsuccessful and only the tip of the epiglottis could be seen on laryngoscopy. After resumption of spontaneous ventilation, 5 mg diazepam, iv, and enflurane 2 per cent via a mask were administered. Multiple blind attempts via the nares at endotracheal intubation were also unsuccessful. At this time there was a significant accumulation of blood and secretions in the orapharynx. Orotracheal and nasotracheal intubation were attempted first with a fiberoptic laryngoscope and then a fiberoptic bronchoscope. These attempts also were unsuccessful primarily due to lack of adequate suction. An Olympus GIF P3® gastroscope was then inserted orally, the pharynx and upper airway were suctioned through the gastroscope, and the vocal cords were then clearly visualized. A 9.5 red rubber endotracheal tube was lubricated and passed over the gastroscope and the trachea was intubated without difficulty.

DISCUSSION

The technique of using a gastroscope for difficult endotracheal intubations has been limited in the past, because of the large diameter of most gastroscopes. The smaller diameter Olympus GIF P3® gastroscope is small enough to accept a 9.5-mm endotracheal tube. Furthermore, the gastroscope provides four-way flexion, an excellent ability to suction blood and secretions under direct vision, and the tip can be cleaned easily. We do not advocate the gastroscope as a first line instrument for endotracheal intubation, but with the use of a 9.5 endotracheal tube it may be a useful alternative to the fiberoptic bronchoscope, especially when large amounts of blood and secretions are present in the airway.

REFERENCES

0003-3022/82/0600/0476 $00.55 © The American Society of Anesthesiologists, Inc.