Title: EFFECTS OF HEMODILUTION WITH AN ARTIFICIAL BLOOD (FLUOSOL-DA) AND HES ON TISSUE OXYGENATION

Authors: I. Kosugi, Ph.D., K. Tajimi, M.D., A. Ohmura, M.D. and K. Okada, M.D.

Affiliation: Department of Anesthesiology, Teikyo University School of Medicine, Tokyo, 173 JAPAN

Introduction: Hemodilution has been frequently used in clinical situations for saving the banked blood and for decreasing the side effects of blood transfusion. However, the presently used diluting solutions possess little oxygen carrying capacity. Perfluorochemical has a high gas solubility and has been investigated as a substitute for red blood cell. The purpose of this study is to evaluate the effects of perfluorochemical emulsion, Fluosol-DA (FDA), and hydroxyethylstarch (HES) on tissue oxygenation during normovolemic hemodilution in dogs.

Methods: Twelve adult mongrel dogs were divided into two groups of six, FDA and HES solution group. Anesthesia was induced with 25 mg/kg of pentobarbital sodium and pancuronium bromide and was administered as necessary to obtain muscle relaxation. The animals were ventilated mechanically with 100% oxygen throughout the experiment. Catheters were inserted through femoral arteries and veins for the measurement of pressures, cardiac output by the thermal dilution method, blood sampling and fluid administration. Two teflon membrane catheters, attached medical mass spectrometer, were inserted into cerebral tissue and brachial muscle to measure the tissue Po2 and Pco2 directly and continuously. When the steady state was accomplished, control measurement were made. After the control measurement, hemosangination from femoral artery and infusion of FDA or HES solution were started simultaneously. The volumes of infused solution and shed blood were the same. When the hematocrit (Hct) was reduced to 20% and to 10%, the second and third measurements were made.

Results: The infused volumes of FDA or HES solution and shed blood were the same and were about 50 ml/kg at Hct of 20%, and about 100 ml/kg at Hct of 10% in both groups. Hemoglobin concentration was reduced to about 6 g/dl at Hct of 20%, and about 3 g/dl at Hct of 10%. The reduction of red cell mass were comparable at each stage in two groups. Mean arterial pressure was slightly decreased during hemodilution and significant reduction from control level was shown at Hct of 10% in both groups. Cardiac output was significantly increased during hemodilution in both groups. Other hemodynamic parameters were not significantly different between two groups. Pao2 was significantly elevated during hemodilution with FDA at each stage, while, with HES solution, it was maintained at the control level. Pao2 in FDA group was significantly increased from 48 mmHg to 73 mmHg at Hct of 20%, and to 83 mmHg at Hct of 10%. In HES solution group, it was reduced significantly from the control level at Hct of 10%. Paco2 was not significantly changed from the control value, and there were no significant differences between two groups. Pco2 was not changed at Hct of 20%, and was increased at Hct of 10% in both groups.

Changes in cerebral tissue Po2 in both groups were shown in Fig. 1. In FDA group, cerebral tissue Po2 was increased from 21 mmHg to 33 mmHg at Hct of 20%, and continuously increased to 37 mmHg at Hct of 10%. In HES group, it was slightly increased at Hct of 20%, and then decreased to the control level at Hct of 10%. Fig. 2 showed the changes in brachial muscular tissue Po2. Brachial muscular tissue Po2 was increased in proportion to severity of hemodilution with FDA. While in HES group, it was slightly increased during moderate hemodilution and then reduced below the control level during severe hemodilution. Cerebral tissue Pco2 and brachial muscular tissue Pco2 were not changed at Hct of 20%, and were slightly but significantly elevated at Hct of 10% in both groups. Those alterations of tissue Pco2 were paralleled to the one of Pco2.

Conclusion: Oxygen transport to cerebral and muscular tissue were compared during moderate and severe hemodilution with FDA and HES solution. The muscular tissue Po2 during severe hemodilution (Hct 10%) with HES solution was lower than the control value. On the other hand cerebral and muscular tissue Po2 values during severe hemodilution with FDA were significantly higher than the control values. These results suggest that FDA may be a better choice for hemodilution.