Title: HYPERCARBIA REDUCES CEREBRAL METABOLISM IN THE ISOLATED CANINE BRAIN

Authors: J.H. Fitzpatrick, Jr., M.D., D.D. Gilboe, Ph.D., and D.B. Kintner, B.S.

Affiliation: Departments of Anesthesiology, Neurosurgery and Physiology, University of Wisconsin Medical School, Madison, Wisconsin 53792

Introduction. There has been little agreement regarding the effects of hypercarbemia on the cerebral metabolic rate for oxygen (CMRO₂). Artru and Michenfelder recently reported that the CMRO₂ was reduced by 10 percent in dogs having a PaCO₂ of 100 torr, and found no reduction at a PaCO₂ of 80 torr. Siesjö, in an accompanying editorial, raised several questions concerning this study and earlier investigations into the effects of hypercarbemia on cerebral metabolism and blood flow. Among these questions were: 1) What were the effects of anesthetics? 2) Were there drug interactions? 3) Were there species differences in the response to CO₂? 4) Did the effects of hypercarbemia vary with the presence of drugs? 5) Were there problems with determining blood flow measurement and the measurement of arteriovenous oxygen content difference in the presence of high cerebral blood flows? and 6) Do the various techniques used to measure CMRO₂ yield similar results? We have investigated this problem in the isolated perfused canine brain preparation. This has several advantages over other models, in that many of the questions posed by Siesjö do not apply because drugs are absent from the perfusate. The remaining methodologic problems are less prominent due to the more direct methods used to measure cerebral blood flow and oxygen content.

Materials and Methods. The brains of 15 unmedicated fasting dogs were isolated in a manner previously described. Anesthesia was induced and maintained with halothane. Following isolation, the brain was perfused by means of a double roller pump-membrane oxygenator system. During the initial 45 min of perfusion the halothane remaining in the system evaporated from the oxygenator. Arterial and venous blood gases were measured with an Instrumentation Laboratories model 313 blood gas analyzer. Blood oxygen content was determined with an oxygen fuel cell (Lex-O2) which had been calibrated with a Van Slyke blood gas apparatus. Cerebral blood flow (CBF) was measured directly by a timed collection of venous blood in a graduated cylinder. CBF was maintained at a constant normal level throughout the experiments. The control perfusate was blood having a normal pH, PaO₂, glucose, electrolytes, a PaCO₂ of 40 torr, and an hematocrit of 30%. Following several measurements of arteriovenous oxygen content difference and CBF, perfusion was changed to the second pump oxygenator system which contained blood identical to the control system except that the PaCO₂ was varied, while maintaining the pH at 7.4. During a 15 min perfusion with hypercarbic blood, 3 measurements of arteriovenous oxygen difference and CBF were made. A lead EEG was continuously recorded. CMRO₂ (ml O₂/100 gm/min) and cerebral vascular resistance (CVR) in torr/ml CBF/min/100 gm were calculated. Each dog served as its own control. Student's t-test for paired data was used to assess the significance of results. Experiments were performed at PaCO₂ s of 60, 80 and 100 torr.

Results. The results are presented in Table 1. Hypercarbemia produced a dose related decrease in both CMRO₂ and CVR in the isolated perfused canine brain.

Discussion. The cerebrovasodilatory properties of hypercarbemia have been well documented. This study confirms the depressive effect of hypercarbemia on whole brain metabolism even at levels as low as 60 torr. There are no anesthetic effects or drug-CO₂ interactions. The cerebral blood flow was maintained constant, and at a normal level. The decrease in CMRO₂ may be a result of inhibited neuronal function since at high partial pressures CO₂ has an anesthetic effect. CO₂ also rapidly crosses the blood brain barrier. Therefore, it may play a rapid change in pH in the vicinity of critical enzymes resulting in a slowing of oxidative phosphorylation and a decrease in oxygen utilization. In this model, with CBF constant, hypercarbemia may result in the selective opening of vascular channels causing a "steal" phenomenon from marginally perfused vessels, and a "luxury" perfusion of other vessels. In the absence of other drugs and sympathetic stimulation it is clear that hypercarbemia does result in a reduction of CMRO₂.

Table 1

<table>
<thead>
<tr>
<th>PaCO₂ (torr)</th>
<th>N</th>
<th>CMRO₂</th>
<th>CVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>5</td>
<td>+8.8%+2.0*</td>
<td>+18.4%+2.2*</td>
</tr>
<tr>
<td>80</td>
<td>5</td>
<td>+17.4%+2.6*</td>
<td>+21.4%+3.8*</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>+16.6%+3.3*</td>
<td>+34.6%+4.4*</td>
</tr>
</tbody>
</table>

*p < 0.05 compared to control

References: