Title:

Semi-Closed Halothane Anesthesia by High Frequency Ventilation

Authors:

M. Manabe, M.D. *, T. Sawa, B.S. *, E. Ikezono, M.D. *, and F. J. Colgan, M.D. +

Affiliation:

* Department of Anesthesiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113, Japan
+ Department of Anesthesiology, The University of Rochester, Medical Center, 601 Elmwood Ave., Rochester, New York 14642, U.S.A.

Introduction. High frequency ventilation (HFV) has been applied to various surgical procedures under general anesthesia, yet most cases reported in the past were performed by jet ventilation and intravenous anesthesia with nitrogen-oxygen. A nomogram to estimate the ventilatory volume required for HFV was described by Borg et al. but it can be used only for the respiratory rate of 60 breaths per minute. In the present study, HFV was applied to semi-closed halothane anesthesia and a ventilatory standard calculated by us which was applicable from low respiratory rates to HFV was provided.

Methods. Sixteen adult patients were ventilated at respiratory rates of 14, 40, 80, 120, 150, and 200 bpm during halothane-nitrous oxide general anesthesia for various surgical procedures. Informed consent and institutional approval for the study were obtained. A Nuffield 200 ventilator (up to 80 bpm, I:E ratio of 1:1-1:2) or a HF ventilator designed by us (up to 200 bpm, I:E ratios of 1:3-1:4) were connected to various types of anesthesiology machines via a corrugated tube of internal volume of 600 mL to prevent the ventilator gas from entering the anesthesia circle. Both ventilators were operated with an Inspiror exhaling valve and jet ventilation was not employed. A co-axial tube (Mera F-respiratory circuit) was used instead of regular corrugated tubes to reduce compressible gas volume in the anesthesia circuit. A Wright respirometer was attached to the endotracheal tube and patient's exhalation volume was monitored and adjusted to the value of our ventilatory standard based on body weights. The ventilatory standard was calculated by the following equations:

\[
V_E = \frac{(V_{AE} + V_{DE}) + \sqrt{(V_{AE} + V_{DE})^2 - 4 \cdot r \cdot V_{AE} \cdot V_{DE}}}}{2}
\]

\[
V_{AE} = \frac{VCO_2}{(1 - r) \cdot PaCO_2 / 715}
\]

where

- \(V_{AE}\): effective alveolar ventilation (mL/min)
- \(V_{DE}\): dead space (mL)
- \(r\): alveolar dead space ratio (0 < r < 1)
- \(VCO_2\): CO2 production (mL/min)

End-tidal \(PCO_2\) \((P_TCO_2)\) was monitored by two types of infrared \(CO_2\) Analysers: DATEX with a sampling tube (slow response) and SIEMENS 130 with a sensor attached directly to the endotracheal tube (quick response). Airway pressure (Paw) was monitored by a regular pressure gauge. Radial arterial blood gas was analysed. Measurements were done 30 minutes after changing respiratory rates.

Results. Table 1 shows the results. \(PaCO_2\) was maintained at normal levels (33.5 and 38.2 mmHg) by our ventilatory standard up to 200 bpm. Normal \(PaCO_2\) corresponded to \(FIO_2\) of 0.4, and \(PCO_2\) fell significantly at respiratory rates above 80 bpm by DATEX \(CO_2\) analyser and above 120 bpm by SIEMENS 130. The peak airway pressure (peak Paw) showed the lowest values at rate of 40 bpm. With I:E ratios of 1:1-1:2, peak Paw rose significantly at rate of 80 bpm while with 1:3-1:4 it rose at rates above 120 bpm. With I:E ratios of 1:1-1:2 Min Paw was elevated to 9.9 ± 1.8 cmH2O at 80 bpm while with 1:3-1:4 it remained 7.7 ± 2.6 cmH2O at 200 bpm.

Table 1

<table>
<thead>
<tr>
<th>RR</th>
<th>(PaCO_2) (mmHg)</th>
<th>(P_TCO_2) (torr)</th>
<th>peak Paw (cmH2O)</th>
<th>I:E ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>35.1±4.2</td>
<td>29.4±3.1</td>
<td>30.8±3.0</td>
<td>12.2±1.1</td>
</tr>
<tr>
<td>40</td>
<td>33.7±5.6</td>
<td>27.3±5.0</td>
<td>30.1±6.1</td>
<td>9.1±2.1</td>
</tr>
<tr>
<td>80</td>
<td>33.5±5.7</td>
<td>18.6±5.4</td>
<td>29.3±5.7</td>
<td>16.1±6.2</td>
</tr>
<tr>
<td>120</td>
<td>33.6±6.6</td>
<td>-</td>
<td>22.3±4.2</td>
<td>-</td>
</tr>
<tr>
<td>160</td>
<td>35.4±6.7</td>
<td>-</td>
<td>17.0±2.1</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>38.2±7.7</td>
<td>-</td>
<td>15.0±1.3</td>
<td>-</td>
</tr>
</tbody>
</table>

Mean ± SD Statistical significance was tested against 14 bpm. *p < 0.05, **p < 0.01

Discussion. It has been mentioned by many investigators that HFV could not be performed with ventilatory system having large compressible gas volume. In the present study, however, halothane-nitrous oxide anesthesia by HFV was maintained successfully and safely with regular semi-closed anesthesia circles by driving by HF ventilators up to 200 bpm. This result suggests that compressible gas volume can be compensated by delivering enough volume of gas from HF ventilators. The result that normal \(PaCO_2\) can be maintained at each respiratory rate suggests that our ventilatory standard is applicable in the range from 10 bpm to HFV. The ventilary standard was derived based on conventional concept ventilation and this suggests that the conventional ventilatory mechanism might be applied well at least up to 200 bpm. Patient's exhaled volume could be measured well by a regular Wright respirometer at HFV. It is shown that the end-tidal \(PCO_2\) at HFV should be determined by a \(CO_2\) analyser which equips a sensor attached directly to the endotracheal tube, such as SIEMENS 130, though even this type of machine causes a lower \(CO_2\) reading than actually exhaled \(PCO_2\) due to the limitation of operating principle of the machine at rates above 120 bpm. The I:E ratios larger than 1:3 is preferable to reduce the rise in airway pressure caused by air-trapping at HFV.

References.