“Resistance to flow in the pulmonary circulation is best identified, at the present time, by the diastolic pressure gradient.” However, resistance in any hydraulic system is no more than the ratio of pressure to flow, and yet Harvey and Enson are advocating measuring a pressure gradient at a time of negligible blood flow through the system.

Because of the distensibility of the pulmonary vascular system and the sustained pulsatility throughout the system, it appears necessary to use pulsatile pressure/flow relationships to define the effects of drugs and other perturbations (such as hypoxia and lung inflation), since PVR has been shown to underestimate the true impedance to right ventricular ejection.2-4 The concept of pulmonary vascular impedance which describes the ratio of oscillatory pressure to oscillatory flow is a logical expression of the characteristics of the pulmonary vascular bed. The development of electromagnetic flowmeters and pressure transducers of high fidelity has enabled physiologists to measure instantaneous blood flow and pressure simultaneously at many sites in the circulation. Such measurements allow computations of true vascular impedance and have been extensively applied to the pulmonary circulation.2,5,6

Even though flow measurements on a beat-to-beat basis are difficult to obtain in the clinical situation, systematic studies of the pulmonary circulation in terms of impedance are needed to aid our understanding of the effect of physiologic and pharmacologic interferences with pulmonary blood flow.

Anesthesiology
58:486, 1983

Advantages of Standing Bellows Ventilators and Low-flow Techniques

To the Editor:—One advantage of low-flow techniques has not received much attention. Small to moderate size leaks are detected earlier than with high-flow systems. This is especially true when standing bellows ventilators are used, rather than hanging bellows ventilators.

In our area, disconnections are an everyday occurrence. Problems have occurred with the fresh gas supply, entrainment of air through vaporizers, and with oxygen analyzers. Some of these accidents have been fatal. Many would have been detected earlier if a standing bellows ventilator had been used.

A large disconnect or cessation of fresh gas flow becomes obvious very quickly by the collapse of the bellows. This often happens before the disconnect alarm sounds. In addition, when used with lower flows, the standing bellows becomes a sensitive leak detector. For example, with a respiratory rate of 10/min and a fresh gas flow of 2 l/min (common values in our hospital), any leak of 200 ml per breath or more will become apparent. In fact, any time the volume of gas lost from the system is greater than the fresh gas flow, the bellows will collapse. When placed at eye level, this type of bellows becomes a valuable monitor of respiratory rate, volume, and most importantly, the physical integrity of the system.

I believe that the standing bellows ventilator is an inherently safer design than the hanging bellows. It is an important advance in anesthetic technology. Its use, especially with moderate gas flows, should be encouraged.

DOUGLAS H. GRAHAM M.D., F.R.C.P.(C)
Department of Anaesthesia
St. Paul’s Hospital
1081 Burrard Street
Vancouver, B.C.
Canada

(Accepted for publication November 2, 1982.)