Transesophageal Echocardiography and Transcutaneous O_2 and CO_2 Monitoring for Detection of Venous Air Embolism

J. A. Glienski, M.D., R. F. Cucchiara, M.D., and J. D. Michenfelder, M.D.

The sensitivities of current monitoring methods for detection of air embolism were compared in eight anesthetized dogs. Air was infused at controlled rates of 0.001 and 0.005 ml·kg$^{-1}$·min$^{-1}$ for 1 min; 0.01, 0.05, 0.1, 0.2, and 0.4 ml·kg$^{-1}$·min$^{-1}$ for 6 min; and 5 ml·kg$^{-1}$ bolus injection. Based on the mean quantity of air infused to elicit a positive response, the monitors could be placed into three significantly different sensitivity groups. Transesophageal echocardiography (TEE) and precordial Doppler ultrasound were the most sensitive monitoring methods detecting 0.19 and 0.24 ml·kg$^{-1}$ of air, respectively. TEE detected air during six infusions in which the Doppler failed to do so. The next most sensitive group of monitoring methods included pulmonary artery pressure (PAP), end-tidal CO_2 (PETCO_2), arterial oxygen tension (PaO$_2$), and transcutaneous oxygen tension (PtCO$_2$). The mean quantity of air infused to elicit a positive response in this group of monitors ranged from 0.61 to 0.76 ml·kg$^{-1}$. The response of PtCO$_2$, PaO$_2$, PETCO_2, and PAP equally reflected the quantity of air infused. The least-sensitive group of methods included arterial and transcutaneous carbon dioxide tension and systemic arterial blood pressure. These data indicate that TEE is more sensitive than Doppler ultrasound and that PAP, PETCO_2, and PtCO$_2$ are equally sensitive in detecting venous air embolism in the dog. (Key words: Carbon dioxide; transcutaneous. Embolism: air. Monitoring: carbon dioxide; echocardiography; oxygen. Oxygen: transcutaneous.)

Monitoring for air embolism is an important component of anesthetic care of patients in the sitting position. The combination of a Doppler ultrasound and either end-tidal carbon dioxide (PETCO_2) measurement or mean pulmonary artery pressure (PAP) monitoring has become a standard monitoring approach for detecting air embolism. The sensitivities of these routinely used monitoring methods for detecting air embolism were previously compared in dogs by English et al.1 Since that work, transesophageal echocardiography (TEE), transcutaneous oxygen (PtCO$_2$), and transcutaneous carbon dioxide (PETCO_2) monitoring have become available for use in the operating room and each has been shown clinically to detect venous air embolism or the accompanying physiologic changes.2,3

The following study was designed to evaluate the monitoring methods currently available to detect venous air embolism, determining the sensitivity of each method and its ability to reflect the volume of air infused. The newer methods (TEE, PtCO$_2$, and PETCO_2) were compared with methods currently used clinically (Doppler ultrasound, PETCO_2, and PAP).

Methods

Subjects were eight mongrel dogs weighing 15.2–23.5 kg (mean 17.2 kg). Anesthesia was induced with pentobarbital 30 mg·kg$^{-1}$ iv and maintained with pentobarbital 5 mg·kg$^{-1}$ as needed. Following tracheal intubation the lungs were ventilated with a volume-cycled ventilator at a tidal volume of 10 ml·kg$^{-1}$. Respiratory rates of 8–12 cycles·min$^{-1}$ were used to maintain baseline arterial carbon dioxide (PaCO$_2$) tension between 35–45 mmHg. Muscle paralysis was achieved with pancuronium 0.1 mg·kg$^{-1}$, which was repeated as necessary. Four dogs received 50% oxygen in nitrogen, and four dogs received 100% oxygen. All dogs remained in a supine position throughout the study and were heparinized.

A 7-Fr balloon-tipped catheter was placed into the pulmonary artery via the right external jugular vein and an 18-g Teflon* catheter was placed in the femoral artery. Both catheters were connected to calibrated Gould-Statham P23ID* transducers. Systemic arterial and pulmonary artery pressures were recorded on a multichannel recorder. A calibrated infrared CO$_2$ analyzer (Beckman Instruments, Inc., Fullerton, CA) was used to measure PETCO_2 from a sample catheter placed just proximal to the endotracheal tube.
The chest was shaved and the skin was cleansed with a detergent followed by alcohol. Transcutaneous O₂ and CO₂ electrodes were placed on the chest following two-point calibration. The PtcO₂ monitor automatically divided the actual PtCCO₂ value by a 1.6 correction factor, and the corrected values are reported in this study. The 1.6 correction factor is based on the observed difference between transcutaneous and arterial carbon dioxide values obtained from the literature and our previous experience. A Doppler ultrasonic flow transducer (Medasonic, Mountain View, CA) was positioned over the right heart chambers so that a 10 ml agitated saline injection delivered to the right atrium would produce an audible change in frequency. A 3.5 MHz TEE echocardiographic probe (Diasonics, Inc., Milpitas, CA) interfaced with a 3400 Diasonics phased array sector ECHO instrument was positioned to view the right ventricular outflow tract. Arterial blood oxygen tension (Pao₂) and PtCO₂ were measured with an Instrumentation Laboratory 1303 blood gas analyzer.

During air infusion, the monitoring methods compared included: precordial Doppler ultrasound, TEE, PAP, Pao₂, PtCO₂, PtCCO₂, PETCO₂, and mean systemic arterial pressure (MAP). Real-time TEE and Doppler changes were monitored by blinded, experienced observers at the start of each infusion. Air was infused into the superior vena cava or right atrium at controlled rates by a Harvard infusion pump through the proximal port of the pulmonary artery catheter. Initial rates were 0.001 ml·kg⁻¹·min⁻¹ and 0.005 ml·kg⁻¹·min⁻¹ for 1 min. Arterial samples were not obtained with these infusions because physiologic changes were not expected to occur at such low doses. The order of the subsequent rates were randomly chosen and included 0.001, 0.05, 0.1, 0.2, and 0.4 ml·kg⁻¹·min⁻¹ for 6 min. A bolus of 5 ml·kg⁻¹ was given at the termination of the study in seven of eight dogs. Arterial blood gas samples were obtained prior to each infusion and 1, 3, 6, and 12 min after the start of each infusion. PtCO₂, PtCCO₂, PAP, and MAP were continuously recorded and PETCO₂ was tabulated at each 15-s interval. All variables were allowed to return to baseline levels before a subsequent infusion was begun.

Positive responses were arbitrarily defined prior to the start of the study and consisted of an increase in PAP of ≥3 mmHg; a decrease in MAP of ≥10 mmHg; a decrease in Pao₂ or PtCO₂ of ≥5 mmHg; a decrease in PETCO₂ of ≥3 mmHg; and an increase in PaCO₂ or PtCCO₂ of ≥3 mmHg. A positive response on Doppler ultrasound was the presence of an unmistakable audible change in frequency and on TEE was the visualization of densities consistent with air bubbles in the right cardiac chambers or outflow tract.

Skin preparation and transcutaneous electrode application were more difficult in dogs than in humans. Because of poor electrode–skin contact, the PtCCO₂ erroneously drifted downward on occasion. The PtCO₂ was labeled as malfunctioning if the PtCO₂ did not reach a baseline prior to air infusion or if following an air infusion it continued to drift downward without returning toward baseline. PtCO₂ data from that injection were eliminated from data analysis, and the PtCO₂ electrode was repositioned.

The quantity of air infused to elicit a positive response for each monitoring method was summed for all 6-min infusions. A mean was calculated and used as a measure of a monitor’s sensitivity in detecting air embolism. Differences between monitoring methods in the quantity of air producing a positive response were tested by a one-way analysis of variance and least significant difference procedure. Differences between those dogs receiving 50% oxygen and those dogs receiving 100% oxygen were tested by Student’s t test for independent samples. The maximum response of each numerically quantitated monitoring method at each air infusion was calculated. The relationship of the dose of air to the magnitude of the monitor response in each subject was analyzed with simple linear regression and trend analysis. The relationship between arterial and transcutaneous gas tension values was analyzed with simple linear regression and correlation analysis. A P value < 0.05 was considered significant. Means ± SD are given.

Results

The air injection rates at which the different monitors developed a consistently positive response are presented (table 1). To allow a statistical comparison of the monitoring methods, the mean quantity of air infused to elicit a positive response was calculated for each monitor (table 2). Based on the mean quantity of air infused to elicit a positive response, the monitors could be placed into three significantly different sensitivity groups: TEE and Doppler demonstrated the greatest sensitivity; PAP, PETCO₂, Pao₂, and PtCO₂ demonstrated intermediate sensitivity; and PaCO₂, MAP, and PtCCO₂ were least sensitive.

TEE and Doppler detected 0.19 and 0.24 ml·kg⁻¹ of air, respectively. TEE detected air during six infusions ranging from 0.001 to 0.01 ml·kg⁻¹·min⁻¹ in which the Doppler failed to do so. There were no infusions in which the Doppler was positive and the TEE was not. The smallest amount of air detected by TEE was 0.02 ml over 1 min, and the smallest amount of air detected by Doppler was 0.12 ml over 40 s.

Among the next most-sensitive group of monitoring methods, the mean quantity of air infused to elicit a positive response ranged from 0.61 to 0.76 ml·kg⁻¹. While PtcO₂ and Pao₂ had more positive responses than PAP and PETCO₂ at 0.05 ml·kg⁻¹, PtcO₂ and Pao₂ did not become consistently positive until 0.4 ml·kg⁻¹·min⁻¹.
There was not a significant difference in the mean quantity of air infused to elicit a positive response in PaO$_2$ or PtcO$_2$ between the dogs receiving 50% oxygen and those receiving 100% oxygen.

Among the least-sensitive group of monitoring methods, the mean quantity of air infused to elicit a positive response ranged from 1.15 to 1.54 ml·kg$^{-1}$. PaCO$_2$ became consistently positive at the 0.4 ml·kg$^{-1}·$min$^{-1}$ infusion, while MAP and PtcCO$_2$ did not become consistently positive until the 5 ml·kg$^{-1}$ bolus injection.

PtcO$_2$ malfunctioned in 11 of 47 air infusions, and the PtcO$_2$ data from these infusions were excluded from data analysis. There was a significant correlation between PtcO$_2$ and PaO$_2$ for all observations (r = 0.92). The maximum PtcO$_2$ response during each infusion significantly correlated with the maximum PaO$_2$ response (r = 0.89).

PtCO$_2$ correlated significantly with PaCO$_2$ (r = 0.66), and the maximum PtcCO$_2$ response during each infusion significantly correlated with the maximum response in PaCO$_2$ (r = 0.87). Onset of changes in PtcCO$_2$ usually followed the corresponding change in PaCO$_2$.

There was a direct incremental relationship between volume of air infused and magnitude of response of each numerically quantitated monitor. Among the more sensitive monitors, the response of PtcO$_2$, PaO$_2$, PETCO$_2$, and PAP equally reflected the volume of air infused (figure 1, table 3). However, PETCO$_2$ and PAP often defined the magnitude of a response sooner than PtcO$_2$, particularly following the 5 ml·kg$^{-1}$ bolus air injection. Trend analysis indicated the relationships depicted in figure 1 were highly significant (P < 0.001) for all four monitoring methods. Regression analysis of the maximum monitor response
versus dose of air for each dog provided consistently positive slopes for PAP and consistently negative slopes for PETCO₂, PtcO₂, and PaO₂ (fig. 2). There was considerable variation in PtcO₂ and PaO₂ response to a given volume of air. There was not a significant difference in magnitude of response in PaO₂ or PtcO₂ between the dogs receiving 50% oxygen and those receiving 100% oxygen.

The time required for each monitor to return to baseline values following air injection was not specifically studied. However, PETCO₂ and PAP usually approached baseline values sooner than PtcO₂. Twelve minutes following the 5 ml·kg⁻¹ bolus injection, PETCO₂, PAP, and PtcO₂ had returned to within 23%, 31%, and 47% of baseline values. A typical response following the cessation of air infusion is depicted in figure 3.

TABLE 3. Maximal Change in Monitoring Method Induced by Air Infusion

<table>
<thead>
<tr>
<th>Monitoring Method (mmHg)</th>
<th>Rate of Air Infusion (ml·kg⁻¹·min⁻¹ for 6 min)</th>
<th>5 ml·kg⁻¹ Bolus</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAP</td>
<td>0.01 0.05 0.1 0.2 0.4</td>
<td>32</td>
</tr>
<tr>
<td>PETCO₂</td>
<td>0.5 0.4 3.1 11.6 22.1</td>
<td>27</td>
</tr>
<tr>
<td>PaO₂</td>
<td>0 2.1 4.7 9.2 12.4</td>
<td>9</td>
</tr>
<tr>
<td>PtcO₂</td>
<td>0 28.1 5.4 23.8 54.2</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>0 7.2 12.5 39.6 54.4</td>
<td>17</td>
</tr>
</tbody>
</table>

See table 1 for abbreviations.

![Graph](image)

Fig. 3. Relationship of mean pulmonary artery pressure (PAP), end-tidal CO₂ (PETCO₂), and transcutaneous O₂ (PtcO₂) following a 5 ml·kg⁻¹ bolus of air. PAP and PETCO₂ values are noted at baseline and 1, 5, 6, and 12 min following air injection. PtcO₂ is a continuous tracing.

Discussion

Clinical venous air embolism generally occurs as air enters an open vein at a slow rate until significant physiologic changes occur. The pathophysiology of slow air infusion has been shown to be different from that of a rapid bolus of air. Methods monitoring the accompanying physiologic changes might, therefore, be expected also to show a different response. To simulate the usual clinical course of air embolism, slow continuous air infusions were used in our study. This differs from the previous work of English et al., who used a more rapid rate of air injection (1 ml·s⁻¹).

Criteria for positive monitor responses were chosen to be in close agreement with the criteria used by English et al. except for PaO₂. A decrease of 25 mmHg in PaO₂ was defined as a positive response in their study. PtcO₂ allowed continuous assessment of PaO₂, and we found in both the operating room and the animal laboratory that a decrease of 5 mmHg reliably indicated a change in baseline oxygenation. For this reason, a 5-mmHg decrease in PaO₂ or PtcO₂ was defined as a positive response.

In spite of differences in methodology, our statistically significant grouping of the monitoring methods was quite similar to the four groups of monitoring methods outlined by English et al. An exception was the increased sensitivity of PaO₂ likely due to the differences in criteria for a positive response. Adding TEE, PtcO₂, and PtcO₂ to the monitoring method grouping places TEE as the most sensitive detector of air embolism.

TEE has been used in the clinical setting and is at least as sensitive as Doppler ultrasound in detecting air embolism. Our data confirmed that TEE was more sensitive than Doppler ultrasound when both were used simulta-
neously to detect known quantities of injected air. Because both units detected small quantities of air prior to physiologic changes, the difference in sensitivities between TEE and Doppler may not be clinically important. However, TEE offers the additional advantage of detecting left-sided cardiac air. It is possible that the early detection of paradoxical air embolism may help prevent morbidity or mortality from systemic arterial embolism.

TEE, as well as the Doppler, cannot quantitate the size of the air embolism. Likewise, neither monitor can reliably detect the cessation of air entry into the venous system. A continued positive response of TEE and Doppler commonly occurred following discontinuation of the air infusion. Air bubbles could be seen on TEE for 6 to 8 min following the 0.2 and 0.4 ml·kg\(^{-1}\)·min\(^{-1}\) infusions. Air was likely trapped in the superior vena cava or right atrial appendage and intermittently escaped from these sites. Martin et al. have demonstrated similar detainment and entrapment of air for 3 to 24 min following air injection.\(^8\,9\)

Our data showed that PtcO\(_2\) was as sensitive as PAP and PETCO\(_2\) in detecting air infusion and equally reflected the quantity of air infused. All three methods detected air infusion well before changes in MAP occurred. Following larger doses of air (5 ml·kg\(^{-1}\)), which presumably decreased cardiac output, the PtcO\(_2\) decrease was disproportionately greater due to a presumed decrease in peripheral perfusion. The duration of positive response for a given air infusion was usually longer for PtcO\(_2\) than for either PAP or PETCO\(_2\), suggesting that altered pulmonary physiology persists even after PAP and PETCO\(_2\) return to normal.

PtcO\(_2\) has been shown to be useful in detecting venous air embolism in the clinical setting, decreasing early during the course of air embolism.\(^3\) Advantages of PtcO\(_2\) monitoring for the detection of air embolism include: 1) it is noninvasive; 2) it provides the most relevant information about the degree of immediate physiologic threat to the patient; and 3) it provides continuous assessment of oxygenation. Disadvantages of PtcO\(_2\) monitoring include the requirement for calibration every 4–6 h and its technical complexity compared with PETCO\(_2\) monitoring. PtcO\(_2\) can reliably reflect the changes in PaCO\(_2\) during air embolism. However, the relatively slow response time of PtcO\(_2\) prevents it from being useful as an early indicator of air embolism.

The ideal monitor for detecting air embolization should: 1) be sensitive and specific; 2) quantitate the size of the air embolism; 3) detect early physiologic changes secondary to the air embolism; and 4) provide information on the cessation of air entrapment. No single monitor meets these requirements. TEE and Doppler are the most sensitive monitors but lack the ability to quantitate the amount of air or detect physiologic changes. PAP, PETCO\(_2\), and PtcO\(_2\) are equally able to quantitate the size of the air embolism and provide information on the cessation of air entrapment. This study did not address specificity of the monitoring techniques. Clinical settings other than air embolism can alter PAP, PETCO\(_2\), or PtcO\(_2\). Changes in these values must be interpreted in light of changes in the TEE or Doppler to prevent false positive diagnosis of air embolism. Therefore, a combination of two or more monitors should be used to detect air embolism. Our data would suggest that TEE or Doppler along with PAP, PETCO\(_2\), or PtcO\(_2\) would provide the proper combination of monitoring to detect air embolism. This combination of monitors would be exquisitely sensitive, quantitate the size of the air embolism, detect early physiologic changes, and provide information regarding the cessation of air entrapment.

We conclude that TEE and PtcO\(_2\) are reliable and sensitive detectors of air embolism. TEE is both more sensitive than Doppler in detecting air and offers the advantage of detecting left-sided cardiac air. PtcO\(_2\) will reflect the decrease in PaO\(_2\) that accompanies air embolism and can be used as a monitor for detecting venous air embolism.

References