there was no difference in the trauma caused by either
type of intubation, as reflected by a similar incidence of sore
throat or hoarseness. Further study should be done to
document movement of the cervical spine as well as
tissue changes in cardiovascular and intracranial pressure mea-
surements occurring during both techniques.

The authors gratefully acknowledge the participation of the operat-
ing room staff of Presbyterian-University Hospital and the work of
their medical student interviewers, Diane Deely and Walt Schrading.
The Concept Corporation, Clearwater, Florida, supplied the Tube-
Stat® lighted styles.

REFERENCES
1. Yamamura H, Yamamoto T, Kamiyama M: Device for blind nasal
intubation. Anesthesiology 20:221–222, 1959
3. Ducrow M: Throwing light on blind intubation. Anesthesia 33:
827–829, 1978

Anesthesiology
64:826–828, 1986

Transesophageal Echocardiographic Observations in a Patient
Undergoing Closed-chest Massage

Fiona M. Clements, M.D.,* Norbert P. de Bruijn, M.D.,† and Joseph A. Kisslo, M.D.‡

The mechanism by which chest compression generates
forward blood flow has not been clarified. Some authors
believe that ventricular compression with normal valvular
competence is responsible,7 and others believe that only
a generalized increase in intrathoracic pressure is neces-
sary, with the heart acting merely as a passive conduit.2,3
A few cineangiographic4 and echocardiographic5 studies of
human subjects undergoing cardiopulmonary resus-
citation (CPR) generally support the belief that the mitral
valve does not move in response to chest compression;
quantitative analysis of wall motion has not been de-
scribed.

*Assistant Professor of Anesthesia.
†Assistant Professor of Anesthesia and Surgery.
‡Associate Professor of Medicine.

Received from the Department of Anesthesiology, Division of Car-
diac Anesthesiology and the Department of Internal Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Car-
olina. Accepted for publication January 25, 1986. Supported in part
by USPHS Grants HL-12715, CA-5-7585, HL-07063, and GM-30820.
Address reprint requests to Dr. de Bruijn: Department of Anesthe-
siology, Box 3075, Duke University Medical Center, Durham, NC
27710.

Key words: Heart; massage. Monitoring: transesophageal echocar-
diography.

4. Rayburn RL: "Light wand" intubation (letter). Anesthesia 34:
677–678, 1979
5. Vollmer TP, Stewart RD, Paris PM, Ellis DG, Berkebile PE: Use
of the lighted stylet for guided orotracheal intubation in the
6. MacIntosh R, Richards H: Illuminated introducer for orotracheal
8. Hartsell CJ, Stephen CR: Incidence of sore throat following en-
9. Wolfson B: Mino; laryngeal sequelae of endotracheal intubation.
10. Stengvis O, Nilsson K: Postoperative sore throat related to tracheal
11. Loeser EA, Kaminsky A, Diaz A, Stanley TH, Pace NL: The in-
fluence of endotracheal tube cuff design and cuff lubrication
on postoperative sore throat. Anesthesiology 58:376–379,
1983
12. Stone DJ, Sirt JA, Kaplan MJ, McLean WC: A complication of
lightwand-guided nasotracheal intubation. Anesthesiology
61:780–781, 1984

REPORT OF A CASE

We report the echocardiographic and hemodynamic findings using
transesophageal 2-D echocardiography (TEE) in a patient undergoing
CPR. As part of an ongoing investigation of TEE as an intraoperative
monitor of myocardial function, this patient gave informed consent
for the use of TEE during surgery for coronary artery bypass grafting
(CABG). Prior to surgery, a Diasonics® echoscope incorporating a 3.5
MHz phased-array transducer was positioned in the esophagus imme-
diately posterior to the left ventricle (LV) to provide a short-axis
view of the LV at the mitral valve level. At several stages of the operation
images were recorded on videotape and analyzed later for short-axis
fractional area change (FAC) and segmental wall motion, using a center
of mass model for wall motion analysis with the Franklin Quantic 1200®
computer. This analysis corrects for translational movement of the
heart by superimposing the cavity centers of mass in end-diastolic
and end-systolic frames. The TEE transducer provided good quality,
high-resolution images of the LV endocardial outline and mitral valve
motion while CPR was completely unimpeded. Concomitant systemic
and pulmonary arterial pressures and electrocardiogram were con-
tinuously recorded on a strip chart at a paper speed of 5 mm/s
during CPR.

The patient, a 71-yr-old man with a 15-yr history of angina pectoris,
had suffered three previous myocardial infarctions. Resting ejection
fraction by megatracer radionuclide angiography was 31% and by cardia-
catherization, 26%. He was considered New York Heart Association
(NYHA) angina Class IV. There was generalized, moderate hypokinesis
of the LV. The mitral valve appeared normal and competent. After
uneventful induction of anesthesia and a stable course before cardio-
pulmonary bypass, the patient underwent saphenous vein grafting to
the left anterior descending, circumflex marginal, and right coronary
arteries and was separated from cardiopulmonary bypass without difficulty while receiving infusions of lidocaine and nitroglycerin. The pericardium was left open and the chest was closed. The thermodilution cardiac output was 4.2 l/min with sinus rhythm at 90 beats/min (fig. 1A). However, the patient’s condition later deteriorated, with a falling cardiac output and a rising pulmonary artery diastolic pressure (fig. 2A). By TEE the lateral wall of the LV was observed to become markedly hypokinetic (fig. 1B). The nitroglycerin infusion rate was increased and nifedipine was given sublingually, but inotropic support with dopamine and epinephrine in increasing doses became necessary to support the failing ventricle. Subsequently ventricular tachycardia developed. External chest compression was begun at a rate of 90–120 beats/min (figs. 1C and 2B). Chest compression was performed by a physician who judged his effectiveness by the magnitude of the arterial waveform. Following defibrillation the patient converted to a sinus tachycardia with aberrant conduction which, with continued chest compression, resulted in improved ejection characteristics and more adequate hemodynamics (figs. 1D and 2C). Chest compression was discontinued with adequate maintenance of blood pressure (fig. 2D) but the patient later went on to develop intractable ventricular tachycardia and died. In addition to evidence of old infarctions, autopsy revealed acute myocardial necrosis of the lateral region of the LV below the level of graft anastomosis to the circumflex marginal artery, although all grafts were patent.

DISCUSSION

TEE recordings from the operation were reviewed and qualitatively scored by all authors to evaluate wall motion and examine the motion of the mitral valve during episodes of ventricular tachycardia (134 beats/min) and sinus tachycardia (90–120 beats/min), with and without CPR. Qualitative evaluation of the videotape agreed well with computerized analyses.

During ventricular tachycardia only the interventricular septum was moved inward by chest compression, producing a small FAC (fig. 2B). This septal motion, occurring synchronously with each chest compression, was clearly visible both in real time and by off-line frame-by-frame analysis of the videotape. The FAC has correlated well with ejection fraction in CABG patients. During sinus tachycardia each heart beat generated some lateral and anterior wall motion that, when occurring synchronously with the septal movement created by chest compression, resulted in improved systemic blood pressure, FAC, and, presumably, ejection fraction. These findings are illustrated in fig. 1; although some images omitted a small segment of endocardial border as shown, quantitative analyses were done with images including the entire endocardial outline. Similarly, only views that clearly showed the mitral valve leaflets were used for evaluation of mitral valvular motion. Normally, wall motion is best evaluated at a midpapillary muscle level where regional contraction patterns are almost symmetrical. At a
mitral valve level, septal motion may normally appear paradoxical; the inward movement is therefore all the more significant. Although septal thickening cannot be evaluated from these images, the effects of external chest compression on septal movement and on the LV minor axis area change at the mitral valve level are clearly shown.

Although the force delivered to the chest with each compression was not measured, the pressure transmitted to the pulmonary artery was found to be fairly constant with both ventricular and sinus tachycardia. Systemic pressures generated by CPR, though, were lower during ventricular tachycardia than with sinus tachycardia, again suggesting improved ejection when CPR is performed in conjunction with an underlying rhythm. The mitral valve was seen to open and close normally during sinus tachycardia. With CPR it was disturbed by chest compression but continued to move in synchrony with the underlying rhythm. However, during ventricular tachycardia there was no predictable motion, with or without CPR.

From our observations with this patient, we conclude that external chest compression moves only the septal wall of the left ventricle, and the mitral valve is not a competent valve in the absence of a stable rhythm. Performance of external chest compression in the presence of a stable rhythm resulted in a larger FAC and, presumably, ejection fraction than with the intrinsic rhythm alone. Improved hemodynamics during CPR with a stable rhythm may result partly from the myocardial contraction generated by an intrinsic depolarization and partly from the activity of a competent mitral valve. Synchrony of external compression with an intrinsic myocardial contraction would presumably result in the optimum cardiac output.

REFERENCES
6. Clements FM, deBruijn NP: Echocardiographic indices of left ventricular function: Comparison of short axis fractional area change and ejection fractions (in press)