Intrapleural Administration of Bupivacaine for Post-thoracotomy Analgesia

To the Editor—Intrapleural administration of local anesthetics has been utilized for post-thoracotomy analgesia.1,2 The technique, as originally described,1 utilizes an epidural catheter inserted percutaneously through a Tuohy needle into the pleural space. We would like to report the successful use of an indwelling chest tube for the same purpose. A 33-yr-old female, who had undergone a thoracotomy for decortication of the lung as treatment for empyema, experienced a great deal of incisional pain requiring significant doses of parenteral narcotics. Three chest tubes had been placed at the time of surgery, and there was no evidence of residual air leak. Thirty milliliters of 0.25\% bupivacaine was instilled into the most posteriorly placed chest tube, taking care not to introduce air into the pleural space, and the chest tube was subsequently clamped for a period of 30 min. Within 15–30 min, the patient reported onset of significant analgesia, which persisted for approximately 2 h. Arterial blood samples taken at 15, 30, 45, and 60 min following the dose revealed serum bupivacaine levels of 0.7, 0.8, 0.6, and 0.7 \(\mu\)g/ml, respectively. These levels are quite similar to those previously reported,2,3 and tend to support the safety of this dose of bupivacaine administered in this fashion. Addition of epinephrine may possibly result in even lower serum concentrations.3 In this case, the posteriormost chest tube was utilized because it was felt that access here was most direct to the proximal portions of the intercostal nerves in the vicinity. One word of caution: if this route is to be utilized, there should be no demonstrable air leak present, and the patient should be able to tolerate clamping of the chest tube. The advantage of this technique is that it utilizes an already existing route to gain access to the pleural space without the need for an additional procedure to place a catheter for local anesthetic administration. The cumulative toxicity of repeatedly administered doses by this route remains to be evaluated.

VICTOR C. LEE, M.D.
Fellow in Pain Clinic
STEPHEN E. ABRAM, M.D.
Professor and Vice-Chairman
Department of Anesthesiology
Medical College of Wisconsin
8700 West Wisconsin Avenue
Milwaukee, Wisconsin 53226

REFERENCES
(Accepted for publication January 13, 1987.)

Is Transesophageal Echocardiography a Measure of Left Ventricular Function?

To the Editor—Konstadt et al.1 attempted to confirm the validity of transesophageal echocardiography (TEE) as a measure of left ventricular function. However, their conclusions may be somewhat misleading. They demonstrated that left ventricular end-diastolic area, end-systolic area, and ejection fraction (EF), as determined by TEE, correlate well with those same measures determined by epicardial echocardiography. They conclude that their data indicate that TEE can accurately assess left ventricular filling and ejection. We believe that the authors must correlate TEE measurements with EF and left ventricular volumes determined by a recognized standard before such a conclusion is warranted.

Several different approaches to determining left ventricular volume using precordial echocardiography have been described.2-6 The best results are obtained when more than one cross-sectional area and the ventricular length are used in the calculation. This approach generally gives good correlation with angiographically derived volumes. Estimates of volume using a single cross section or diameter have often correlated poorly with angiographically derived estimates.2,3
Konstadt et al. refer to a recent study by Dubroff et al. to validate the use of epicardial echocardiography as the reference measurement of ventricular volume and EF in their study. The study by Dubroff et al. did demonstrate a reasonably good correlation between EF calculated from cross-sectional area and EF determined angiographically. Unfortunately, the actual data were not published, and similar studies do not all corroborate this strong correlation. Therefore, for quantitative volume assessment, the authors should demonstrate good correlation with an accepted standard.

Although the data of Konstadt et al. indicate a good correlation between epicardial and transesophageal estimates of volume and ejection, we conclude that TEE has yet not been validated as a quantitative method for left ventricular volume or ejection fraction determination.

JOHN H. URBANOWICZ, M.D.
Fellow

NEAL H. COHEN, M.D.
Professor and Vice Chairman

Department of Anesthesia
University of California, San Francisco
S 436
San Francisco, California 94143-0418

References

(Accepted for publication January 13, 1987)

In Reply:—In a recent paper, we compared transesophageal and on-heart echocardiography measurements of end-diastolic area (EDA), end-systolic area (ESA), and ejection fraction area (EFA), and obtained close correlations. No prior paper had compared transesophageal echocardiography (TEE) measurements with those obtained by another quantitative technique. This is important, because the determination of left ventricular cavity size by TEE is potentially inaccurate. The probe is positioned blindly and views the heart from a retrocardiac position; therefore, the possibility of acute angulation between the heart and the probe exists, and the echocardiographic images may be distorted. The purpose of our study was to determine if TEE is an accurate means to measure LV short axis areas at the level of the papillary muscles. We chose on-heart echocardiography (OHE) as a standard because it has been shown to correlate closely with the "gold-standard"—cineangiography. In addition to the study by Dubroff, Ren et al. demonstrated a close correlation between ejection fraction obtained by OHE with cineangiography (r = 0.91). Furthermore, as an internal standard, we compared the ejection fraction areas obtained by OHE with those obtained by cineangiography in our patients, and also found a good correlation (r = 0.88). The studies cited by Urbanowicz and Cohen that question the validity of OHE are not relevant to our study. Those studies attempted to relate echocardiographic measurements to ventricular volumes. We measured ventricular areas and calculated EFA. At no point did we attempt to derive volumes from the single short axis view measured areas. We specifically avoided this conversion because it requires several assumptions. Using the actual measurements of short axis LV areas at the level of the papillary muscles, we demonstrated a close correlation between TEE and OHE obtained measurements of EDA, ESA, and EFA. End-diastolic area and ejection fraction area are measures of end-diastolic cavity size and ejection, and, therefore, we concluded that TEE can accurately assess LV filling and ejection.

STEVEN KONSTADT, M.D.
Assistant Professor of Anesthesiology

DANIEL THYS, M.D.
Associate Professor of Anesthesiology