A 22-yr-old man was admitted to our institution for fulminant hepatic failure of unknown etiology. He rapidly developed stage 3–4 hepatic coma, and as ventricular size was small, a modified Richmond subarachnoid line was inserted for monitoring of ICP. An initial pressure of 36 mmHg was noted. The following day an orthotopic liver transplant was performed. During the prehepatic and anhepatic stages of the procedure, the patient’s ICP remained below 10 mmHg with only moderate hypertension (Paco₂, 27). Upon completion of the anastomoses of the graft liver, as the portal vein was unclamped, an immediate decrease in mean arterial pressure (MAP) occurred. As the MAP spontaneously returned to baseline, the patient’s ICP began to increase. Manual hyperventilation was instituted with little effect. When the ICP reached 50 mmHg, thiopental was administered intravenously in two bolus doses of 250 mg and 500 mg, respectively (fig. 1). The patient’s ICP transiently decreased to 20 mmHg, but rapidly returned to 33 mmHg. Following the second dose of thiopental, the patient’s ICP remained below 24 mmHg and continued to slowly decline to 4 mmHg by the end of the procedure. No further treatment of the ICP was instituted other than continued moderate hyperventilation (Paco₂ 32 mmHg). No vasopressors were administered during the case. In the ICU the patient’s ICP remained 10–15 mmHg and the bolt was removed on the second postoperative day. The trachea was extubated on that day. No neurologic sequelae were present 1 week postoperatively.

The incidence of cerebral edema in patients with fulminant hepatic failure has been reported to be over 50% with evidence of herniation at the time of death in 12%.4 Cerebral edema has been considered the most common immediate cause of death in fulminant hepatic failure.4 Thus, treatment of cerebral edema and its resultant increased intracranial pressure is a critical element in managing cases of hepatic failure. Brajtford et al. have reported a case of elevated intracranial pressure during OLT that was treated by incremental removal of CSF via a ventriculostomy.4 The etiology of this increase was unclear, however, because vasopressors had been given to treat hypotension at the time of the increase in ICP. As our patient did not receive any form of vasopressors, the acute increase in ICP seemed to be the direct result of reperfusion of the graft liver and/or ischemic mesenteric and lower extremity tissues. Data concerning a "safe” upper limit for ICP are sparse, but it has been suggested that a persistent level over 30 mmHg should be treated to reduce the risk of herniation.5

We have observed this same phenomenon in several, but not all, patients in fulminant hepatic failure undergoing hepatic transplantation. Our experience, along with the other reports cited, suggests that reperfusion of ischemic tissues may have an adverse effect on the intracranial pressure of a patient with reduced intracranial compliance. Early diagnosis and treatment of such may avoid a potentially devastating outcome.

THOMAS GUNNING, M.D.
DAN BRAJTBOURD, M.D.
TIM R. VALEK, M.D.
MICHAEL A. E. RAMSAY, M.D.
Department of Anesthesiology
Baylor University Medical Center
3500 Gaston Avenue
Dallas, Texas 75246, and
Department of Anesthesiology
UT Southwestern Medical Center
Dallas, Texas

REFERENCES

(Accepted for publication November 16, 1989)

Anesthesiology
72:392–393, 1990

Pre-Eclamptic and Healthy Term Pregnant Patients Have Different Chronotropic Responses to Isoproterenol

To the Editor:—We have previously demonstrated that healthy term pregnant women have a blunted chronotropic response to isoproterenol compared to nonpregnant women.1 If pre-eclamptic and healthy term pregnant patients differ in chronotropic responsiveness to isoproterenol, an isoproterenol epidural anesthesia test dose designed for healthy parturients might be unsafe or not efficacious in pre-eclamptic patients. We therefore determined the chronotropic responsiveness of pre-eclamptic patients to isoproterenol and compared these data with those previously obtained from healthy term pregnant and nonpregnant women.1,2

With IRB approval, we obtained written informed consent from five nonlaboring, nulliparous, term pregnant patients with mild pre-eclampsia. All patients had new onset proteinuria (≥ 2+ by urine dipstick on two occasions) and a recent (<2 week) diastolic blood pressure (BP) increase of ≥ 15 mmHg and/or systolic BP increase of ≥ 30 mmHg on two occasions at bed rest 6 h apart. Preinjection external
The mean CD25 in preeclamptic patients (0.8 µg with a coefficient of variation of 102%) differed significantly from the CD25 previously determined for healthy term pregnant patients (3.6 µg with a coefficient of variation of 51%) \((P < 0.01)\) but did not differ from the CD25 previously determined for healthy nonpregnant women (0.7 µg with a coefficient of variation of 130%) (fig. 1). Systolic and diastolic BP and FHR patterns did not change.

The fivefold difference in the chronotropic responsiveness of preeclamptic and healthy pregnant women may complicate efforts to design a chronicotopic epidural anesthesia test dose that is both safe and effective in all parturients. Isoproterenol 5 µg safely and effectively indicates iv injection in healthy pregnant women. However, isoproterenol 5 µg, which is 1.4 times the CD25 for healthy term pregnant women, is 0.25 times the CD25 for pre-eclamptic term pregnant women. Isoproterenol 5 µg is more likely to cause hypotension or exaggerated tachycardia in a pre-eclamptic woman than in a healthy pregnant woman.

Of course, isoproterenol cannot yet be used in an epidural anesthesia test dose even in healthy term pregnant women, for insufficient animal neurotoxicology data exist.

BARBARA L. LEIGHTON, M.D.
Assistant Professor of Anesthesiology

MARK G. NORRIS, M.D.
Associate Professor of Anesthesiology

CHERYL A. DESIMONE, M.D.
Instructor in Anesthesiology

MARILYN J. DARBY, M.D.
Assistant Professor in Obstetrics and Gynecology

HYMAN MENDUKE, PH.D.
Professor of Pharmacology (Biostatistics)
Department of Anesthesiology
Jefferson Medical College
111 South 11th Street
Philadelphia, Pennsylvania 19107

REFERENCES

(Accepted for publication November 16, 1989.)

Anesthesiology
72:393–394, 1990

Propofol Causes Cardiovascular Depression. I.

To the Editor:—In the otherwise exhaustive and excellent review of the new iv anesthetic propofol, Sebel and Lowdon\(^1\) confused at least this reader about the cardiovascular effects of the drug. As one of the FDAs consultants, particularly on the cardiovascular effects of propofol, I have had the opportunity to review both the company's studies and the published literature in some detail. In my opinion, all of the studies that have looked at the effect of propofol on cardiovascular dynamics in a variety of populations have demonstrated that propofol produces cardiovascular depression that is very similar to that of the iv barbiturates (biopental and methohexitol). When differences have been demonstrated, propofol has almost universally been more depressant to the cardiovascular system than are the iv barbiturate-induction agents. Although Sebel and Lowdon note that cardiac output and arterial pressure were significantly and markedly decreased in a number of studies, several of their statements, I believe, may be misleading.

For instance, the statement that, "The cardiovascular effects of pro-