CLINICAL CIRCULATION IV

Title: CARDIOPULMONARY BYPASS AND TOTAL CIRCULATORY ARREST ALTERS CEREBRAL METABOLISM IN INFANTS, CHILDREN

Authors: WJ Grolee, MD, FI Kom, MD, RM Ungemach, MD, TJ Quill, MD, B Baldwin, CRNA, JG Reeves, MD

Affiliations: Departments of Anesthesiology and Surgery, Duke Heart Center, Durham, NC

Introduction: Cardiopulmonary bypass (CPB) management in infants and children involves extensive alterations in temperature (18-37°C) and perfusion pressure, with occasional periods of circulatory arrest. Despite the use of these biological extremes of temperature and perfusion, their effects on cerebral metabolic rate (CMRO₂) are unknown. This study was designed to examine the effect of hypothermic CPB in children with and without periods of total circulatory arrest on CMRO₂ and to determine the temperature coefficient (Q₁₀), which defines the relationship of temperature to CMRO₂.

Methods: After Institutional Review Board approval and informed parental consent, CBF and CMRO₂ were measured in 46 infants and children, ages 1 day to 9 years, undergoing CPB. Patients were grouped based on CPB conditions: 1) moderate hypothermic CPB (MHC-PBP) at 28°C with continuous flow, 2) deep hypothermic CPB (DHC-PBP) at 18-20°C with continuous flow, and 3) deep hypothermic CPB at 18-20°C with total circulatory arrest (DHCRA). CBF was measured using xenon clearance methodology. Using a jugular venous bulb catheter, cerebral venous oxygen content was directly measured, and CMRO₂ and oxygen extraction (CaO₂ - CvO₂) were determined. Measurements were made before CPB (stage A); during stable hypothermic CPB (stages B + C) or at stable hypothermic CPB immediately before and after DHCRA (B + C); and after CPB (stage E). To examine the relationship of temperature to CMRO₂, the temperature coefficient (Q₁₀), defined as the ratio of metabolic rates at two temperatures separated by 10°C, was determined from data from the stages A (baseline at 36°C) and B (CPB, cold) for each group. Data was analyzed using paired t-tests and linear regression techniques.

Results: See Table. All groups showed a significant decrease in CBF and CMRO₂ during hypothermic bypass conditions at stage B compared to pre-bypass levels (A; p < 0.001). In the MHC-PBP and DHC-PBP groups, CBF, CMRO₂ and CaO₂ - CvO₂ returned to near baseline levels in the rewarming phase of bypass (D) and after bypass (E). In DHCRA patients, CBF, CMRO₂ and CaO₂ - CvO₂ remained reduced during rewarming after circulatory arrest at stage D and persisted after being warmed from bypass at stage E. The Q₁₀ for the MHC-PBP, DHC-PBP and DHCRA groups were 3.2, 4.1 and 5.1 respectively.

Discussion: These data demonstrate several new findings: 1) CBF and CMRO₂ are significantly reduced during hypothermic CPB in children, principally related to temperature reduction. Q₁₀ quantifies this relationship and shows a considerably greater Q₁₀ for the deep hypothermic groups (DHC-PBP, DHCRA). The striking increase in Q₁₀ going to 18-20°C proves that the known protective effect of deep hypothermia for circulatory arrest up to periods exceeding 1 hour can be explained on a metabolic basis alone. 2) After rewarming from DHCRA, CBF and CMRO₂ remain reduced, suggesting post-ischemic hyperperfusion and a metabolic disturbance in oxygen utilization. In the presence of slow flow after DHCRA, these patients are unable to increase oxygen extraction to meet tissue demands during rewarming and after CPB.

TABLE

<table>
<thead>
<tr>
<th>Group</th>
<th>CBF (ml/min/kg)</th>
<th>CMRO₂ (ml/min/kg)</th>
<th>CaO₂ - CvO₂ (ml/min/kg)</th>
<th>TEMP (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHC-PBP</td>
<td>20.55 ± 0.05</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
<td>37.05 ± 0.15</td>
</tr>
<tr>
<td>DHC-PBP</td>
<td>7.00 ± 0.05</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
<td>37.05 ± 0.15</td>
</tr>
<tr>
<td>DHCRA</td>
<td>7.00 ± 0.05</td>
<td>0.02 ± 0.02</td>
<td>0.02 ± 0.02</td>
<td>37.05 ± 0.15</td>
</tr>
</tbody>
</table>

References

1. Anaesthesia 43: 935-938, 1988