EQUIPMENT, MONITORING, AND ENGINEERING III

A428

TITLE: PERIOPERATIVE DECREASE IN HEPATIC VENOUS OXYGEN SATURATION AFFECTS SERUM TRANSAMINASES AFTER LIVER SURGERY

AUTHORS: M. Kaimura, M.D., N. Kimura, M.D., K. Nakashima, M.D., Y. Shimada, M.D.

AFFILIATION: Anes. Dept., Nagoya University School of Medicine, Nagoya 466, Japan

Hepatic blood flow may be altered by surgical manipulations and anesthetics. Although continuous monitoring of hepatic venous oxygen saturation (ShvO2) might provide valuable information concerning hepatic oxygen supply and demand, it still remains unidentified how perioperative ShvO2 affects postoperative serum transaminases and bilirubin.

METHOD. From July 1988 to January 1990, ShvO2 was monitored in consecutive seventy-seven patients undergoing hepatic lobectomy, after institutional approval and informed consent. An oximeter catheter (Oximetrax Corp.) were introduced through the internal jugular vein into the hepatic vein. Anesthesia was maintained with 67% nitrous oxide and oxygen with 1-2% enflurane, and supplemented with low dose of fentanyl. The lowest ShvO2 and the duration of ShvO2 below 40, 30, 20 and 10% were compared with the postoperative serum glutamic-oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), total (TB) and direct (DB) bilirubin, estimated blood loss and the duration of the surgery. Data were statistically evaluated with regression analysis.

RESULTS. Significantly positive relationships were observed between the duration of ShvO2 below 30% and postoperative serum transaminases (Table 1). Correlation coefficients became weaker when the duration of ShvO2 below 40, 20 or 10% were taken. The lowest value of ShvO2 was not significantly correlated with either GOT or GPT. The duration of the surgery was not correlated with serum transaminases. Estimated blood loss was correlated with serum TB and DB.

Table 1. Correlation Coefficients

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>post-op day 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOT</td>
<td>0.71 (P<.05)</td>
<td>0.65 (P<.05)</td>
<td>0.64 (P<.05)</td>
<td></td>
</tr>
<tr>
<td>GPT</td>
<td>0.65 (P<.05)</td>
<td>0.66 (P<.05)</td>
<td>0.64 (P<.05)</td>
<td></td>
</tr>
<tr>
<td>TB</td>
<td>0.30</td>
<td>0.30</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td>0.23</td>
<td>0.29</td>
<td>0.34</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION. The interesting result of this study is close relationship between the duration of ShvO2 below 30% and postoperative serum transaminases. It might suggest that the postoperative liver function is influenced by perioperative oxygen supply-demand ratio in the liver. With a continuous ShvO2 monitoring, we could minimize postoperative hepatic damage by shortening the duration of ShvO2 below 30%.

REFERENCE

A429

TITLE: OXYGEN SATURATION OF HEPATIC VEIN REFLECTS THE CHANGES IN HEPATIC ENERGY CHARGE IN RATS

AUTHORS: K. Nakashima, M.D., M. Kaimura, M.D., N. Kimura, M.D., T. Kurokawa, M.D., Y. Shimada, M.D.

AFFILIATION: Dept. Anes. and 2nd surgery, Nagoya Univ. Sch. of Med., Nagoya, Japan 466

Evaluation of the metabolic status of liver is important for the anesthetic management of hepatic surgery. We previously reported the usefulness and safety of the continuous monitoring of hepatic venous oxygen saturation (ShvO2), using an oximeter catheter (Oximetrax C3) placed in hepatic vein, during hepatic surgery. The purpose of this study is to verify that the ShvO2 reflects the changes in hepatic energy charge (HEC).

The study protocol was approved by our institutional Research Committee. Thirty male Sprague-Dawley rats (300-400g) were anesthetized with pentobarbital 40mg/kg, tracheotomized, breathing room air spontaneously. Catheters were placed in femoral artery and hepatic vein for sampling blood. Then, to change the ShvO2, they inspired varying concentrations of O2/N2 mixed gas (FIO2 0.1, 0.15 and 0.2) spontaneously. After three minutes, hepatic venous and arterial blood were drawn and the whole liver was immediately removed. The liver was frozen in liquid nitrogen, and ATP, ADP, and AMP were measured by using a liquid chromatography. HEC was calculated as follows: HEC=(ATP+0.5ADP)/(ATP+ADP+AMP). PaO2, PaCO2, and ShvO2 were measured by a blood gas analyzer (ABL-3: Radiometer) and oximeter (OSM-3: Radiometer).

PaO2, PaCO2 and ShvO2 are shown in the table, and the correlation between ShvO2 and hepatic energy charge is shown in the figure. HEC was plateaued when the ShvO2 was above 30%, but it decreased as ShvO2 decreased when ShvO2 was below 30%.

Our results suggest that ShvO2 could reflect the changes in hepatic energy charge, and the critical level of ShvO2 would be about 30%. We consider that the continuous measurement of ShvO2 might be a useful and valuable indicator of metabolic status of liver during hepatic surgery.

References

<table>
<thead>
<tr>
<th>FIO2</th>
<th>0.1(n=13)</th>
<th>0.15(n=6)</th>
<th>0.2(n=11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaO2 mmHg</td>
<td>40.7±13.2</td>
<td>36.1±12.3</td>
<td>45.7±8.7</td>
</tr>
<tr>
<td>PaCO2 mmHg</td>
<td>35.0±15.4</td>
<td>58.5±18.3</td>
<td>78.9±22.8</td>
</tr>
<tr>
<td>ShvO2 %</td>
<td>20.2±9.0</td>
<td>49.8±19.1</td>
<td>59.6±13.5</td>
</tr>
</tbody>
</table>

Energy Charge 0.4

0.2

ShvO2 20 40 60 80 100 %

Downloaded from http://www.asahq.org/anesthesiology/article-pdf/73/3A/416996/0000542-199009001-00428.pdf by guest on 13 December 2021