A1168

ASA ABSTRACTS

A1169

TITLE: THE EFFECTS OF NITROUS OXIDE ON THE VENTILATORY RESPONSE TO SUSTAINED HYPOXIA IN MAN

AUTHORS: A. Dehan, M.D. and D.S. Ward, M.D., Ph.D.

AFFILIATION: Dept of Anesthesiology, University Hospital Leiden, Leiden, The Netherlands and UCLA School of Medicine, Los Angeles, CA 90024, USA

Low concentrations of inhalational anesthetics as well as the inhalation of 2% N2O are known to depress the acute ventilatory response to hypoxia. The effects of 20% N2O on the ventilatory response to prolonged (> 5 min) hypoxia is addressed in this study. Normally hypoxia causes an initial hyperventilation, followed after 5 min by a decrease in ventilation (V̇E). In studying the effects of drugs on the hypoxic response it is important to investigate both the hypoxic ventilatory response (HVR) and the hypoxic ventilatory drive (HVD).

Methods: Five healthy male subjects, mean age 24 yr, were studied after informed consent and local ethics committee approval. Each experiment consisted of a control hypoxic test, followed by a 30 min rest period. Then N2O was inhaled and at least 10 min later the hypoxic test was repeated. The hypoxic test consisted of a 5 min equilibrium period (P[F5], 103 mmHg) followed by a rapid decrease in P[F] to 90 mmHg for 20 min. The PH2 was strictly controlled slightly above resting values (40 to 46 mmHg among subjects) throughout each experiment. Each hypoxic test was followed by a 10 min period of breathing 100% oxygen.

Results: In the control experiments, V̇E increased from 11.5 ± 4.2 L/min (mean ± SD) to 18.8 ± 8.6 L/min initially with hypoxia and then declined significantly to 14.6 ± 6.4 L/min (P < 0.01, ANOVA). In the N2O experiments, V̇E increased from 11.2 ± 3.4 L/min initially with hypoxia and then declined significantly to 10.0 ± 2.2 (P < 0.05). Between groups HVS was not significantly different and was caused by an increase in tidal volume and respiratory rate. The N2O group showed a significant increase in respiratory rate against a small decrease in the control group. In both groups tidal volume decreased.

Discussion: Our results show that 20% N2O does not change HVS but reduces the magnitude of HVD. The lower concentrations of N2O that we used may explain why other studies found that N2O decreased HVS. No data has previously been reported on the effects of N2O on HVD. The decrease in HVD in our study may be caused by the stimulating effect of 20% N2O on brain metabolism or release of catecholamines by N2O.

1. Anesthesiology 45: 385-389, 1976

A1169

TITLE: EFFECTS OF IBUPROFEN ON THE ENDOTOXIN-INDUCED INHIBITION OF THE PULMONARY PRESSOR RESPONSE TO HYPOXIA IN DOGS


AFFILIATION: Dept. of Anesthesiology, Osaka National Hospital Osaka 556, Osaka, Japan

Introduction. Loss of hypoxic pulmonary vasoconstriction (HPV) response might be one of the causes of hypoxia in an acute lung injury such as ARDS. The purpose of this study is to investigate the contribution of cyclooxygenase pathway products to inhibition of HPV response given the low-dose endotoxin in dogs. Methods. Wistar F344 mongrel dogs were anesthetized and the left lower lobe (LLL) was separately ventilated from the rest of the lung. Pulmonary artery pressure (PAP) and cardiac output (Q̇) were measured by a thermocatheter catheter. The blood flow to the LLL (Q̇LLL) was measured with the electromagnetic flowmeter (Nihon-Kohden Co), and Q̇LLL was calculated as Q̇L/Q̇Lx100. The vascular pressure flow curve (P-Q̇) curve of the LLL was recorded by generating occluders placed around the both pulmonary arteries. The intensity of HPV response was evaluated as the changes of Q̇LLL, PAP and the shift of P-Q̇ curve when the inspired gas to the LLL was switched from hyperoxic (95%O2+5%CO2) to hypoxic (95%N2+5%CO2). In the group 1 (n=6), after baseline measurement, 10ug/kg of E.coli endotoxin (Difco) was given and the LLL was intermittently exposed to 30min hyperoxia and 15min hypoxia for 120min. In the group 2 (n=6), 75min after intravenous administration of 20mg/kg of Ibuprofen (Sigma), 10ug/kg of ET was given, and intermittent hypoxic challenges were repeated for 120min. Every data was obtained just before and end of each hypoxic phase and biological measurements: counts of leucocytes, serum 6-keto-PGF1α and TXB2 were also performed. ANOVA was used for repeated measurements and a p<0.05 indicated statistical significance.

Results. As shown in the table, HPV response in the control group was completely inhibited after ET although the 2nd response slightly recovered, but in the group of Ibuprofen pretreatment HP response was sustained after ET. The shift of P-Q̇ curves indicated the same evidence. ET-induced increase in 6-keto-PGF1α from 175.5±27.1 to 332.8±84.1 pg/ml was blocked by Ibuprofen pretreatment from 204.8±41.0 to 217.1±60.4 pg/ml. Decrease in leucocytes counts after ET were observed both in groups of the presence or absence of Ibuprofen.

Conclusions. These results suggested that release of prostacyclin was involved with inhibition of HPV response by endotoxin.