Title: MECHANISMS OF BLEEDING REDUCTION INDUCED BY APROTININ DURING CARDIOPULMONARY BYPASS : A CONTROLLED STUDY

Authors: COMMIN PL MD, LU H MD, SORIA C PhD, CAEN JP
MD PhD, PIWNICA A MD, ECHTER E MD.
Affiliation: Anes. Dept., Lariboisiere University
Hospital, Paris, France.

Effectiveness of Aprotinin (Trasylol) on bleeding during cardiopulmonary bypass(OPB) has been well established. Mechanisms of action were investigated in a double blind study performed on 20 patients who underwent aorto coronary bypass and were randomly included in Placebo(P) or in Aprotinin(A) group.

Patients characteristics: age (A: 60.448.1, P: 62.844.64 years) applies of arcset (A: 60.448.1, P: 62.844.1)

Patients characteristics: age (A: 60.4±8.1, P: 62.8± 4.64 years), number of grafts (A: 2.6± .5, P: 2.6±.5) and preoperative Left Ventricular Ejection Fraction (A: 50 ± 8.3 %, P: 48 ± 5 %), no aspirin during 8 days prior to the operation.

Aprotinin Protocol: loading dose of 280 mg prior to incision, 280 mg into the membrane oxygenator prime, and a continuous infusion of 50 mg/h from anesthesia induction until ICU arrival. Heparinemia during CPB was kept over 4Units/ml. Blood loss from mediastinal drainage was recorded for each patient. Blood was sampled before anesthesia(1), 30 min after start of CPB(2), 5 min after aortic clamp release(3) and after heparin neutralization(4). Samples were studied to determine: 1° specific fibrin degradation products as D Dimers complex (DDE).

2° Platelet function by Ristocetin Agglutination, 3° tissue Plasminogen Activators (tPA), 4° OThromboglobulin (RTG) and Platelets curber

4° BThromboglobulin (BTG) and platelets number. RESULTS: ANOVA mean 1-4.

	1	2	3	4	ANOVA	
DDE (ng/ml)A		57	81	461	¿.001	
	280	338*	710**	1944**		
	100	103	100	92	4،001	
(%control) P	100	78*	61**	52**		
	250	125	133	111	ns	
(1000/mm3) P		122	143	135		
tPA (ng/ml)A	8.3	6.7	10.6	18.4	ns	
	6.8	10.6	11.8	18.4		
BTG (ng/m1)A	117	117	180	290	ns	
P	98	106	182	283		
	100	73	69	73	ns	
	100	69.5	62	68.8		
p < 0.05 *, p	<0.003	5 **		_		

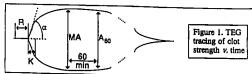
NEGATIVE CORRELATIONS

DDE2 vs RA(4) p<0.001,vs RA(3) p<0.008

DRAINAGE VOLUME MEAN SEM UTI

AINAGE VOLUME MEAN SEM WILCOXON
(ml) A 277 ±46 p≤ 0.04
P 629 ±189

Those findings suggest that Aprotinin acts by plasmin inhibition with a resulting protective effect on platelet GPIb receptors break down on the platelet membrane. Moreover A inhibits tPA effects on the hemostatic clots of the wound closure REFERENCES: Bidstrup BP et al, J Thorac. Cardiovasc. Surg., 1989, Vol97, 364.

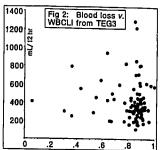

A1206

TITLE: IS THE THROMBOELASTOGRAPH A CLINICALLY USEFUL PREDICTOR OF BLOOD LOSS AFTER BYPASS?

AUTHORS: DF VAN RIPER MD, JC HORROW MD, D OSBORNE BS AFFILIATION:

Department of Anesthesiology, Hahnemann University, Philadelphia, PA 19102

The thromboelastograph (TEG) may assist recognition and management of coagulopathies after cardiopulmonary bypass (CPB). Fig.1 displays TEG measurements: R and K reflect coagulation time; α is speed of clot formation; MA is maximum clot strength; A_{60} is clot strength 60 min later; whole blood clot lysis index (WBCLI= A_{60}/MA) measures clot breakdown. WBCLI<0.8 indicates fibrinolysis. This study determined whether TEG measurements correlated with fibrin split products $\geq 10 \mu g/ml$ (+FSP) and predicted blood loss after CPB.



Methods: After institutional approval and informed consent, patients undergoing cardiac surgery donated blood prior to skin incision (FSP1, TEG1), after protamine (TEG2), and again 2 hrs after sternal closure (FSP3, TEG3). Mass of blood drained via mediastinal tubes over 12 hrs determined blood loss. Correlation coefficients compared TEG data with blood loss. WBCLI cut-offs of 0.8 and 0.05 divided patients into groups. ("Tear-drop" TEG patterns occur at WBCLI<0.05.) Chi-sq statistic compared frequency data; unpaired t-test compared grouped continuous variables.

Results: No patient had +FSP prior to skin incision, but 16/88 had WBCLI<0.8 and 1/88 WBCLI=0. WBCLI after protamine (TEG2) predicted blood loss (table). After operation (TEG3), WBCLI correlated with neither +FSP nor blood loss (table). WBCLI (fig.2), R, K, and α did not correlate with blood loss; MA (r=.34) and A_{60} (r=.25) correlated poorly. +FSP after surgery did not affect R, K, α , A_{60} , or WBCLI, and minimally affected MA (65 v. 61 $P\!<$.04).

TABLE: TEG2 Bld loss TEG3 +FSP3 TEG3 Bld loss	WBCLI≥0.8 384±188(SD) 15/70 400±220 *N=16/86, P=	8/19 463±221	≥0.05 386±182 23/88 413±222 #N=5/86,	
	. , –		11 5/00,	10.0001

Discussion: TEG3 parameters predict neither presence of FSP nor post-op bleeding. Post-op TEG appears to provide no useful information. TEG2 did predict blood loss, confirming that fibrinolysis occurs and corrects with time. However, >1 hr is needed to measure WBCLI. By this time, fibrinolysis has subsided. TEG2 information is too tardy for therapeutic decisions.

References:

- 1. SPIESS BD, ET AL.: J CLIN MONIT 3:25-30, 1987.
- 2. KANG YG, ET AL.: ANESTHESIOLOGY 66:766-773, 1987.