3. Both the text and the legend clearly indicate that after the initial response, therapy was started and no further data points were included for that patient.

 We agree that "the plasma concentration of fentanyl or sufentanil that blocks undesirable responses to painful stimuli in all human patients has not been determined." What we question is whether such a concentration exists in a clinically useful dose range. Drs. Stanley and Bailey's description of the enormous doses of fentanyl required to block response to pain in dogs seems to corroborate our opinion.

 Further studies with extremely large doses or perhaps even more potent opioids will be necessary to put this issue to rest. Then the related issue of appropriateness of these doses in terms of side effects and cost will have to be addressed. For the present, we remain convinced that in the clinically relevant dose range of available potent opioids, no evidence of a dose-response relationship exists.

 Daniel M. Philbin, M.D.
 Carl E. Rosow, M.D.
 Robert C. Schneider, M.D.
 Greg Koski, M.D.
 Michael N. D'Ambra, M.D.
 Department of Anesthesia
 Massachusetts General Hospital
 Boston, Massachusetts 02114

 (Accepted for publication November 2, 1990.)

Anesthesiology
74:390, 1991

In Reply—Stanley and Bailey miss the mark in their analysis of the findings by Philbin et al. Philbin et al. gave a loading infusion along with a constant maintenance infusion of sufentanil in the manner suggested by Wagner1 as a means of quickly reaching a stable plasma concentration—a highly desirable condition in which to relate drug concentration to effect. The expected consequence of this infusion regimen is an initially very high drug concentration that rapidly declines as the drug equilibrates between plasma and well-perfused tissues (distribution phase). Thereafter, plasma and brain concentrations decline more slowly until a steady state is reached. A delay between the initial loading infusion and measurements of drug concentration and effect is necessary to allow relatively stable conditions to be achieved. The sequence employed by Philbin et al. was appropriate to their purpose.

Observations of response/nonresponse were made for sternotomy when the plasma levels of sufentanil were relatively stable. Reliable "anesthesia" (i.e., suppression of hemodynamic responses to a potent noxious stimulus) was not evident in the range of 10–16 ng/ml concentrations of sufentanil in plasma. The proportion of responders was virtually the same in the concentration ranges of 2–5 ng/ml (7 of 13), 5–10 ng/ml (7 of 14), and 10–16 ng/ml (4 of 10). I doubt that anyone would be willing to administer the very large doses of sufentanil necessary to produce and maintain plasma concentrations greater than 10 ng/ml and still accept a 40% response rate. And if not 10–16 ng/ml, how much sufentanil is required to use it as a "pure anesthetic"? That is the primary practical point made by Philbin et al.

Importantly, de Lange et al. did not use "pure" sufentanil to achieve satisfactory anesthetic conditions in their cardiac surgical patients. Their patients were premedicated with a large oral dose of lorazepam (0.08 mg/kg).2 We have found that this large dose of lorazepam makes it relatively easy to finish the induction of anesthesia and to maintain it with a moderate concentration of opioid in plasma.3,4

Carl C. Hug Jr., M.D., Ph.D.
Professor of Anesthesiology and Pharmacology
Emory University School of Medicine
Director, Cardiothoracic Anesthesia
The Emory Clinic
Atlanta, Georgia 30322

REFERENCES

(accepted for publication November 2, 1990.)

Anesthesiology

Nystagmus Following Epidural Morphine

To the Editor—We read with great interest the report of Fish and Rosen1, in which a case of vertical nystagmus in a patient who had received epidural morphine was described. We recently also observed such a case.

A 67-yr-old male, of weight 75 kg and height 168 cm, underwent bilateral total knee replacements for osteoarthritis. His past medical history was unremarkable; specifically, he had no neurologic disease and was taking only a nonsteroidal anti-inflammatory medication. His anesthetic was performed with lumbar epidural anesthesia using 0.75% bupivacaine HCl. During the surgical procedure he received midazolam 10 mg. No other hypnotics, sedatives, or analgesics were administered. In the recovery room he received a loading dose of 2 mg preservative-