formed, and the left IJV was simultaneously examined as a control. Although a thrombus was not found in the right IJV, we noted that the left IJV flowed cephalad, while the left subclavian vein flowed normally. We immediately removed the pulmonary artery catheter from the right IJV and gently pressed the puncture site, while we confirmed blood flow of the right IJV with duplex ultrasound.

The patient suffered from slight congestive heart failure but did not show any neurologic symptoms after surgery. He was discharged from hospital three months after surgery. Blood flow reversal of the left IJV and normal blood flow of the right IJV was again confirmed using duplex ultrasound.

Rupture and subsequent ligation of the left innominate vein is a rare but possible complication during open heart surgery. In this case, it was believed that the blood flow of the left subclavian vein was re-versed toward the transverse sinus in the cranium through the left IJV, adding to the blood flow at the confluent sinus and draining through the right IJV (fig. 1). In other words, the blood in the right IJV came from the entire brain and left upper extremity. Because it has been reported that occlusion of both internal jugular veins caused cerebral dysfunction, when the left innominate vein was ligated during open heart surgery, the catheter in the right IJV was promptly removed to avoid complications that might occur if thrombus developed in the lumen of the right IJV.

AKITOMO YONEI, M.D.
ATSUO SARI, M.D.
Department of Anesthesia
Kurashiki Central Hospital
1-1-1 Miwa Kurashiki
Okayama 710
Japan

REFERENCES

(Accepted for publication December 14, 1990.)

Protamine: A Cardiotoxic Agent with Negative Inotropism

To the Editor—Morel et al. provided an excellent study on adverse cardiopulmonary effects of protamine. We agree that the degree of the response to protamine correlated with the rate of protamine administration. However, we do not understand why the authors concluded that it was the rate of generation of heparin-protamine complexes, rather than the excessive amount of circulating free protamine, that initiated the sequence of adverse responses. We think that either one is possible when protamine is infused rapidly.

In a recent paper we described the direct effects of protamine on myocardial contractility in isolated rabbit heart. The results showed that protamine infusions exerted significant dose-related progressive negative inotropic effects at concentrations of 0.01, 0.1, and 0.25 mg/ml. At 0.5 mg/ml, it caused an almost complete loss of contractility, with peak developed tension of only 6% of control value or total arrest despite continuous electrical stimulation. A similar pattern of changes was noted in dp/dt. The severely depressed myocardial septa following the large dose of protamine (0.5 mg/ml) developed intermittent electromechanical uncoupling. They either failed to recover any contraction at all (two cases) or took 35 ± 4 min to recover to the initial level.

The pathophysiologic mechanism to develop the adverse effects of protamine infusion remains controversial* and may be multifactorial. Our study suggested that the cardiotoxic depressant effect of protamine in large doses may play a role, particularly in rapid infusion. More studies need to be done. We also found that heparin was a myocardial depressant but was not cardiotoxic, and that heparin-protamine complexes caused less myocardial depression than did protamine itself.†

T. Lee, M.D.
Associate Professor
Y. Lin, M.D.
Assistant Professor
Department of Anesthesiology
Harbor-UCLA Medical Center
Torrance, California 90509

REFERENCES
1. Morel DR, Costabella PM, Pittet J-F: Adverse cardiopulmonary effects and increased plasma thromboxane concentrations following the neutralization of heparin with protamine in awake sheep are infusion rate-dependent. ANESTHESIOLOGY 73:415-424, 1990

(Accepted for publication December 14, 1990.)

* Unpublished data.