The Neuromuscular Effects of ORG9426 in Patients Receiving Balanced Anesthesia

Francis F. Foldes, M.D.,* Hideo Nagashima, M.D.,† Hung D. Nguyen, M.D.,‡ Wilma S. Schiller, M.D.,§ Mary M. Mason, C.R.N.A., Yoshio Ohta, M.D.§

In searching for a nondepolarizing muscle relaxant with intermediate duration but more rapid onset of action than the presently available compounds, the neuromuscular and circulatory effects of ORG9426 were investigated in two studies in humans receiving fentanyl, droperidol, thiopental, and nitrous oxide–oxygen anesthesia. Eighty patients, randomly assigned to one of four groups of 20 each, received 0.12, 0.16, 0.20, or 0.24 mg/kg ORG9426. In the first study, the doses (in milligrams per kilogram) of ORG9426 that caused 50% (ED50), 90% (ED90), or 95% (ED95) neuromuscular block were determined by the individual dose-response method; they were 0.170, 0.268, and 0.305 mg/kg, respectively. In the second study, after induction of anesthesia, patients received 0.5 mg/kg (about 2 × ED50) of ORG9426, either in a single bolus (group 1) or in two unequal (0.1 and 0.5 mg/kg) increments 4 min apart (group 2). After the administration of 0.6 mg/kg ORG9426, maximal neuromuscular block developed in 1.5 ± 0.12 min in group 1 and in 1.2 ± 0.14 min in group 2. Patients tracheas were intubated after development of the maximal neuromuscular effect of the intubating dose and after recording of heart rate and systolic and diastolic blood pressure. There was no difference in the clinical duration of the intubating doses, which were 40.0 ± 3.2 (15–75) min in group 1 and 39.3 ± 2.4 (19–57) min in group 2. Clinical duration of the first repeat dose of 0.1, 0.15, or 0.2 mg/kg ORG9426, administered whenever the twitch tension elicited by the first train-of-four impulse recovered to 25% of control was 11.0 ± 1.0 (4–16), 18.3 ± 1.6 (7–50), and 28.1 ± 6.3 (7–69) min, respectively. The recovery index was 16.7 ± 1.2 (4–64) min. In 89 patients residual neuromuscular block at the end of anesthesia could be antagonized with 0.5 mg/kg edrophonium + 0.015 mg/kg atropine in 2 to 5 min. No circulatory or other side effects attributable to ORG9426 and no signs or symptoms of recurrent paralysis were observed in the postanesthetic recovery room. The onset time of ORG9426 was shorter than those of other nondepolarizing muscle relaxants previously studied in identically anesthetized patients. "Priming" did not shorten the onset time of 2 × ED50 ORG9426. Because of its rapid onset of action, of the currently available nondepolarizing muscle relaxants, ORG9426 may prove useful for facilitating rapid sequence intubation. (Key words: Neuromuscular relaxants, ORG9426: pharmacodynamics.)

The introduction of vecuronium and other nondepolarizing muscle relaxants of intermediate duration of action into clinical practice represents a significant advance for the provision of safe and controllable muscular relaxation. Slow onset of action, however, has been a common shortcoming of all of these agents. It has been reported that in cats the onset time of ORG9426, the 2-morpholinol-16-allyl-pyrrolidino derivative of the 3-hydroxy analog of vecuronium (figure 1), was shorter, its duration of action similar, and its neuromuscular potency about one fifth that of vecuronium. Like vecuronium, the cardiovascular effects of ORG9426 were insignificant. It was the purpose of this study to determine whether ORG9426 has similar desirable neuromuscular properties in anesthetized humans.

The effects of ORG9426 were observed in two studies in patients anesthetized with fentanyl, droperidol, thiopental, and nitrous oxide in oxygen ("balanced anesthesia"). In the first study, referred to as the "single-dose response study," the doses (in milligrams per kilogram) of ORG9426 that caused 50% (ED50), 90% (ED90), or 95% (ED95) neuromuscular block were determined. In the second study, referred to as the "clinical study," the neuromuscular and circulatory effects of the 2 × ED50 dose, administered in a single bolus or in two unequal increments (by the "priming principle")2,3 were observed.

Materials and Methods

ASA physical status 1, 2, and 3 patients of both sexes, between 18 and 66 yr of age, gave informed consents to participate in two studies approved by the institutional review board of the hospital. Patients who had neuromuscular disorders, those who received drugs in the perioperative period that could effect neuromuscular activity, and women with child-bearing potential were excluded from these studies.

Anesthetic Management

All patients were given, intramuscularly, 50–100 mg diphenhydramine hydrochloride and 50–100 mg meperidine hydrochloride 60–90 min before induction of anesthesia. Anesthesia was induced with 0.5–1 μg/kg fentanyl citrate, 0.1 mg/kg droperidol, and 2–3 mg/kg thiopental sodium, all injected intravenously (iv), and 4 l/min nitrous oxide–2 l/min oxygen. After induction of anesthesia, an oropharyngeal airway was inserted, and ventilation was manually assisted or controlled, via face mask, until tracheal intubation. Anesthesia was maintained with a 2-l/
min nitrous oxide–1-l/min oxygen gas mixture, 25–100-
µg increments of fentanyl, and, occasionally, 25–100 mg
thiopental.

MONITORING OF NEUROMUSCULAR TRANSMISSION

Neuromuscular transmission was monitored in both the
dose-response and clinical studies by continuous recording
of the force of contraction of the adductor pollicis muscle,
elicted by stimulation of the ulnar nerve at the wrist, and
was quantitated by a force displacement transducer (Myo-
trace™ model APM-6, Professional Instruments). Trains
of four (TOF), supramaximal, square-wave impulses of
0.2- ms duration at 2 Hz, were administered every 12 s.
In both studies 4 min was allowed for stabilization of the
response to TOF stimulation before administration of the
first dose of ORG9426.

End-tidal carbon dioxide tension was maintained at
near 40 mmHg throughout anesthesia. Rectal tempera-
ture was between 35 and 37° C. No effort was made to
measure the surface temperature of the thenar.

DETERMINATION OF THE DOSE-RESPONSE

The individual dose method was used for the deter-
mination of the dose response of ORG9426. To find the
optimal dose range, after induction of anesthesia, three
patients each were injected iv, in an ascending order, with
0.12, 0.16, 0.20, or 0.24 mg/kg ORG9426. The data
obtained in these 12 patients were not used for the de-
termination of the dose response. Subsequently, four
groups of 20 patients each received randomly one of the
above four doses of ORG9426.

Since in our clinical experience, in adults, the neu-
romuscular effect of muscle relaxants is more closely related
to body surface area (BSA) than to body weight (BW),
4 correction was made for deviations of BW from the 70-
kg “reference man” with the empirical formula:

Corrected BW (BW_C) (kg) = 0.5 × BW (kg) + 35 kg

The BW_C obtained with this simple formula was very simi-
lar to that obtained using the equation of DuBois and
DuBois:

BSA (m²) = BW (kg)^0.425 × height (cm)^0.725 × 71.84

or the appropriate nomogram based on it. The BSA of
the “reference man” of 70-kg BW and 170-cm height
determined with this formula is 1.81 m². This means that
the BW corresponding to 1 m² BSA of the reference man
equals 70/1.81 = 38.68 kg. Accordingly, the BW_C (in
kilograms) can be calculated by determining the BSA (in
meters squared) from the DuBois–DuBois nomogram and
multiplying it by 38.68. The BW_C of 40 patients of the
clinical study determined with the proposed simple for-

dula and the DuBois–DuBois equation had a correlation
coefficient 0.97 (y = 1.09 × −7.03).

After development of the maximal effect of the initial
dose, the total dose of ORG9426 administered was in-
creased to 0.3 mg/kg by the injection of a variable (0.06–
0.18 mg/kg) second dose. If after the second dose the
twitch tension elicited by the first impulse of TOF (T1)
was more than 10% of control, then greater than 90%
neuromuscular block was achieved by the injection of one
or, occasionally, two 0.1-mg/kg increments of ORG9426.
At this time the trachea was intubated.

The ED₅₀, ED₆₀, and ED₉₅ mg/kg doses of ORG9426
were determined with the log-dose–probit method. Data
from 73 patients in whom the injected dose of ORG9426
caused 1–99% block were used for the calculation of the

![Structural formulas of ORG9426, vecuronium, pancuronium, and pipercuronium. Note that the first two are monovalent and that the second two are bivalent compounds.](image)
Table 1. Demographic Data

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of Patients</th>
<th>Age (yr)</th>
<th>Weight (kg)</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>Dose-response Clinical Group 1</td>
<td>20</td>
<td>44.3 ± 2.9 (21-62)</td>
<td>80.2 ± 3.9 (53.6-122.5)</td>
<td>13</td>
</tr>
<tr>
<td>Dose-response Clinical Group 2</td>
<td>20</td>
<td>46.6 ± 2.8 (22-64)</td>
<td>74.2 ± 3.6 (48.2-104.5)</td>
<td>14</td>
</tr>
</tbody>
</table>

Data for age and weight are mean ± SEM; range in parentheses.

dose response. Data from 7 patients in whom the initial dose of ORG9426 did not decrease T1 or increased it above control were not included in the calculation of the dose response. If muscular relaxation had to be prolonged, 0.10 or 0.15 mg/kg ORG9426 was administered whenever T1 increased to 25% of control.

CLINICAL STUDIES

In the clinical studies, 40 patients were randomly divided into two groups of 20 each. Four to 5 min after induction of anesthesia, patients in group 1 were given iv a single 0.6-mg/kg dose (about 2 × ED₉₅) of ORG9426. At the same time, those in group 2 received an 0.1 mg/kg priming dose of ORG9426 followed by an 0.5 mg/kg “intubating” dose 4 min later. This time interval was selected to allow for the development of the maximal neuromuscular effect of the priming dose. After development of the maximal neuromuscular effect of the intubating dose, the patients’ tracheas were intubated. The maximal neuromuscular effect, the time from end of injection of intubating dose to the development of the maximal effect (onset time), and the time required for the return of T1 to 25% of control (clinical duration) were recorded. When T1 returned to 25% of control after the administration of the intubating dose, patients in both clinical groups, who required continued muscular relaxation, received a 0.15- or 0.20-mg/kg increment of ORG9426. The same doses were repeated, whenever T1 returned to 25% of control, for as long as muscular relaxation was required.

In both studies, whenever possible, recovery of neuromuscular transmission was allowed to proceed spontaneously, and the recovery index (the time from 25 to 75% recovery of T1) and the time for 10–90% recovery of T1 were recorded. In 89 patients in whom the ratio of the fourth to first response to TOF (T4/T1 ratio) was less than 0.75 at the end of surgery, the residual neuromuscular block was antagonized with a mixture of 0.5 mg/kg edrophonium and 0.015 mg/kg atropine, injected over 60 s. T1 and the T4/T1 ratio were measured before and at 2 and 5 min after the end of administration of the antagonist.

Heart rate and systolic and diastolic blood pressure were determined automatically with a Dinamap™ apparatus (model 1846SX1P) at 1-min intervals during the first 30 min of anesthesia and every 3 min thereafter. In addition, in the second study a triggered determination of these variables was initiated just before the injection of the 2 × ED₉₅ dose of ORG9426, after development of its maximal neuromuscular effect, and just before and at 2 and 5 min after the end of injection of the antagonist. Arterial hemoglobin oxygen saturation and end-expiratory carbon dioxide tension were measured throughout induction and maintenance of anesthesia.

STATISTICS

The statistical significance of the differences of the various parameters were determined by analysis of variance followed by Tukey’s test or by Student’s t test, for paired or unpaired variables, as indicated. P < 0.05 was considered significant.

Results

The demographic data of the patients who participated in our dose-response and clinical studies, summarized in

Table 2. The Neuromuscular Effects of Increasing Doses of ORG9426 in Patients Receiving Balanced Anesthesia

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>T1 (% of control)</th>
<th>T4/T1 Ratio</th>
<th>Onset Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td>88.2 ± 4.4 (55.0–114.8)</td>
<td>0.50 ± 0.04 (0.23–0.78)</td>
<td>3.8 ± 0.2 (2.4–7.0)</td>
</tr>
<tr>
<td>0.16</td>
<td>65.7 ± 6.2 (7.4–100)</td>
<td>0.34 ± 0.04 (0.00–0.60)</td>
<td>3.9 ± 0.1 (3.0–5.0)</td>
</tr>
<tr>
<td>0.20</td>
<td>36.7 ± 5.4 (8.3–103.8)</td>
<td>0.12 ± 0.04 (0.00–0.65)</td>
<td>4.2 ± 0.2 (3.0–5.0)</td>
</tr>
<tr>
<td>0.24</td>
<td>18.1 ± 2.8 (2.3–46.7)</td>
<td>0.08 ± 0.02 (0.00–0.43)</td>
<td>4.4 ± 0.2 (3.0–6.2)</td>
</tr>
</tbody>
</table>

Data are mean ± SEM of 20 observations; range in parentheses. Onset time is time from end of injection to development of maximal effect.
The mean ± standard error of the neuromuscular effect, expressed as percent of control T1, of the T4/T1 ratio, and of the time for the development of the maximal effect of the various doses of ORG9426, are summarized in table 2. The data indicate that, as with other muscle relaxants,\(^6\)\(^9\) there is considerable individual variation in the neuromuscular effect of the same milligram-per-kilogram dose of ORG9426.

The ED\(_{50}\), ED\(_{90}\), and ED\(_{95}\) of ORG9426, determined from the log-dose-probit response regression line obtained in 73 patients (see Materials and Methods) (fig. 2) were 0.170, 0.268, and 0.305 mg/kg, respectively.

The duration of action of repeat doses of ORG9426, the recovery index, the time for spontaneous recovery of T1 from 10 to 90% of control, and the effect of edrophonium on the residual neuromuscular block in the dose-response and clinical studies were similar. Therefore the observations made on these variables in the two studies are presented together.

In group 2 the priming dose of 0.1 mg/kg ORG9426 decreased T1 to 88.0 ± 4.6% of control and T4/T1 to 0.58 ± 0.04.

The neuromuscular effects of intubating doses of ORG9426, summarized in table 3, indicate that the time for development of 80% depression of T1, onset time, and clinical duration were similar in the two groups. Intubating conditions in group 1 were excellent (vocal cords motionless and no bucking) in all patients; in group 2 they were excellent in 16 and good (slight bucking) in 4 patients.

The clinical duration of the first repeat doses of 0.10, 0.15, and 0.20 mg/kg ORG9426 were 11.0 ± 1.0 (n = 11, 4–16), 18.3 ± 1.6 (n = 28, 7–50), and 28.1 ± 6.5 (n = 10, 7–69) min, respectively. On repeated administration of the same dose of ORG9426 to the same patients there was a trend for a moderate increase in the clinical duration of successive doses (table 4).

The data presented in table 5 indicate that there is considerable individual variation in the spontaneous recovery parameters of ORG9426.

Of the 120 patients, neuromuscular transmission recovered spontaneously in 31 who required no muscular relaxation after intubation. Of the 89 patients who received edrophonium, recovery parameters could not be measured in 4 patients because of mechanical difficulties. In the remaining 85, the residual neuromuscular block at the end of anesthesia could be antagonized readily, in 2–5 min, by 0.5 mg/kg edrophonium and 0.015 mg/kg atropine (table 6). In 9, however, the T4/T1 ratio at 5 min after edrophonium ranged from 0.50 to 0.73. These patients were given oxygen by mask and were discharged to the postanesthetic recovery room only when clinical signs (e.g., head lift sustained for more than 5 s and grip strength) indicated adequate recovery of neuromuscular transmission.

There were no significant changes in heart rate or systolic and diastolic blood pressure, measured at 1-min in-

Table 3. Neuromuscular Effects of Intubating Doses of ORG9426

<table>
<thead>
<tr>
<th>Variables</th>
<th>Group 1 (n = 20)</th>
<th>Group 2 (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to 80% block (min)</td>
<td>0.90 ± 0.05 (0.5–1.4)</td>
<td>0.86 ± 0.07 (0.4–1.8)</td>
</tr>
<tr>
<td>Onset time (min)</td>
<td>1.49 ± 0.12 (0.7–5.0)</td>
<td>1.23 ± 0.14 (0.6–3.5)</td>
</tr>
<tr>
<td>Maximal effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical duration (min)</td>
<td>40.0 ± 3.2 (15–75)</td>
<td>39.3 ± 2.4 (19–57)</td>
</tr>
</tbody>
</table>

Data are mean ± SEM; range in parentheses.

Group 1 received a single, 0.6 mg/kg iv dose. Group 2, received 0.1 and 0.5 mg/kg iv doses 4 min apart. Onset time is time from end of injection to development of maximal depression of T1; clinical duration is time from end of injection of intubating dose to recovery of T1 to 25% of control.

* Neuromuscular block was 97.4% in one patient in group 1 and 92.9% in another in group 2.
TABLE 4. Clinical Duration (min) of Repeat Doses of ORG9426

<table>
<thead>
<tr>
<th>Dose</th>
<th>0.1</th>
<th>0.15</th>
<th>0.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>10.5 ± 1.2 (9) [4–16]</td>
<td>15.4 ± 1.5 (16) [7–30]</td>
<td>17.7 ± 5.0 (6) [7–29]</td>
</tr>
<tr>
<td>Second</td>
<td>13.4 ± 0.8 (9) [10–18]</td>
<td>18.3 ± 1.5 (10) [10–32]</td>
<td>22.8 ± 5.4 (6) [7–47]</td>
</tr>
<tr>
<td>Third</td>
<td>13.8 ± 1.2 (9) [6–20]</td>
<td>20.0 ± 1.9 (16) [12–38]</td>
<td>27.7 ± 8.4 (6) [8–68]</td>
</tr>
</tbody>
</table>

Data are mean ± SEM of number of observations indicated in parentheses; range in brackets.
Repeat doses were administered whenever T1 recovered to 25% of control. Observations were made of patients who received at least three doses.

* Significantly different (P < 0.05; paired t test) from duration of first dose.

Onset times suitable for “rapid-sequence intubation” can be achieved by the iv administration of 0.6 mg/kg succinylcholine in 1.6 ± 0.1 min or by 6 × ED95 (0.3 mg/kg) or 8 × ED95 (0.4 mg/kg) vecuronium in 1.5 ± 0.1 min or 1.3 ± 0.1 min, respectively, or by the administration of 0.065 or 0.1 mg/kg vecuronium in divided doses in 1.6 ± 0.2 and 1.4 ± 0.1 min, respectively. Succinylcholine, however, has many potentially dangerous side effects.18 Large (6–8 × ED95) single doses of vecuronium cause unpredictable, excessive prolongation (up to 215 min)17 of the clinical duration of the neuromuscular block and occasional difficulties in the recovery of the block at the end of anesthesia.18 The administration of vecuronium in divided doses prolongs induction time. In contrast, after the administration of 2 × ED95 ORG9426, onset times, suitable for facilitation of rapid-sequence intubation can be achieved just as rapidly as with the above mentioned techniques, without excessively long clinical duration, prolongation of the induction time, or unwanted side effects.

Little information is available on the pharmacokinetics of ORG9426. The elimination half-life, 203 ± 169 min (mean ± standard deviation), distribution volume at steady state, 283 ± 183 ml/kg, and plasma clearance, 2.8 ± 0.9 ml/kg/min, in six patients with normal kidney function and five patients with renal failure were similar.18 There were no significant differences between the above kinetic parameters of ORG9426 and those of vecuronium determined in the same laboratory in four patients.19 The mean elimination half-life of ORG9426 (203 min) was about 2.5 times longer than that of vecuronium (79.5 min) reported earlier,19 but their difference, probably because of the small number of observations and the large standard deviation, was not significant.

In conclusion, ORG9426 has a short onset time; the clinical duration of its intubating dose is intermediate; and it appears to have no circulatory side effects. Because of these desirable properties, of the currently available nondepolarizing muscle relaxants, ORG9426 may prove

TABLE 5. Spontaneous Recovery From ORG9426-induced Neuromuscular Block

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>Mean ± SEM (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery index</td>
<td>69</td>
<td>16.7 ± 1.2 (4–64)</td>
</tr>
<tr>
<td>T4/T1 ratio at 75% recovery of T1</td>
<td>68</td>
<td>0.40 ± 0.02 (0.13–0.73)</td>
</tr>
<tr>
<td>Time (min) from 10% to 90% recovery of T1</td>
<td>37</td>
<td>24.4 ± 2.0 (7–56)</td>
</tr>
<tr>
<td>T4/T1 ratio at 90% recovery of T1</td>
<td>45</td>
<td>0.52 ± 0.03 (0.20–0.79)</td>
</tr>
</tbody>
</table>

Recovery index is the time (min) for recovery of T1 from 25% to 75% of control.

TABLE 6. Antagonism of the Residual ORG9426 Block

<table>
<thead>
<tr>
<th></th>
<th>TI</th>
<th>T4/TI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before edrophonium</td>
<td>60.7 ± 2.8 (11–106)</td>
<td>0.35 ± 0.02 (0–0.75)</td>
</tr>
<tr>
<td>After edrophonium</td>
<td>99.2 ± 2.3 (50–161)</td>
<td>0.83 ± 0.01 (0.47–1.00)</td>
</tr>
<tr>
<td>2 min</td>
<td>104.3 ± 2.2 (50–164)</td>
<td>0.86 ± 0.01 (0.50–1.00)</td>
</tr>
</tbody>
</table>

Data are mean ± SEM of 85 cases; range in parentheses.

TABLE 7. Comparison of the Neuromuscular Effect of ORG9426, Vecuronium, Pipercuronium, and Pancuronium in Patients Receiving Anesthesia

<table>
<thead>
<tr>
<th>Compound</th>
<th>ORG9426</th>
<th>Vecuronium</th>
<th>Pipercuronium</th>
<th>Pancuronium</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED95 (mg/kg)</td>
<td>0.170</td>
<td>0.030</td>
<td>0.020</td>
<td>0.033</td>
</tr>
<tr>
<td>ED99 (mg/kg)</td>
<td>0.268</td>
<td>0.044</td>
<td>0.033</td>
<td>0.049</td>
</tr>
<tr>
<td>Recovery index (min)</td>
<td>16.6 ± 1.1</td>
<td>14.3 ± 2.1</td>
<td>44.5 ± 8.2</td>
<td>41.3 ± 4.2</td>
</tr>
</tbody>
</table>

ED95 and ED99 of pancuronium from Donlon et al., all other data on vecuronium, pipercuronium, and pancuronium from Foldes et al. Relative potency is at the ED95 level; onset time is time to the development of maximal effect of 2 × ED95 doses of ORG9426 (0.6 mg/kg), vecuronium (0.1 mg/kg), pipercuronium (0.08 mg/kg), or pancuronium (0.1 mg/kg).

References