Computer-controlled Infusion of Alfentanil for Postoperative Analgesia

A Pharmacokinetic and Pharmacodynamic Evaluation

Background: Although computer-controlled infusion (CCI) of alfentanil has been shown to be effective intraoperatively, this technique has not been validated for postoperative use. Therefore, the authors examined the efficacy of this technique in providing postoperative pain relief. The study comprised both a validation of published pharmacokinetic data sets and the definition of the minimum effective analgesic concentrations after major orthopedic surgery.

Methods: The bias and inaccuracy of the implemented pharmacokinetic data set were examined, in 20 patients who had undergone major orthopedic surgery, by determination of the median performance error (MDPE) and median absolute performance error (MDAPE). The performance of two other published pharmacokinetic data sets was also examined by simulating the plasma concentrations that would have been predicted, had these data sets been implemented. The minimum effective analgesic concentrations (MEAC) were determined at the following time points: at the onset of pain, at 9:00 PM on the day of surgery, and at 9:00 AM and 9:00 PM on the first postoperative day.

Results: Measured plasma concentration-time profiles generally were parallel to the target concentration-time profiles. The MDPE and MDAPE obtained were 12% and 28%, respectively. The MEACs ranged from <1 to 175 ng/ml and showed substantial interindividual variability. The median MEACs at the four study times were 59, 52, 65, and 43 ng/ml. The MEAC at 9:00 PM on the first postoperative day was significantly lower than those at the other study times (P < 0.05).

Conclusion: Computer-controlled infusion of alfentanil provides adequate postoperative analgesia. The study demonstrated that pharmacokinetic data sets that are useful for intraoperative CCI of alfentanil are equally valid in the postoperative phase. Although required plasma concentrations of alfentanil are reasonably stable in time, interindividual variations are large, necessitating individual titration. (Key words: Analgesia: postoperative. Analgesics: alfentanil. Computer: computer-controlled infusion. Pharmacodynamics: alfentanil; minimum effective analgesic concentration. Pharmacokinetics: alfentanil. Predictions, drug levels: errors.)

THE degree of postoperative pain varies widely between individuals, and also fluctuates in time. A technique for administering analgesics tailored to the needs of the individual patient should, therefore, provide the best pain relief. At present, patient-controlled analgesia (PCA) with morphine, diamorphine, or meperidine is the only individually tailored technique for postoperative analgesia that is commonly used in clinical practice. The current PCA devices rely on the administration of bolus doses (with or without a baseline infusion), and, consequently, the plasma concentration, the concentration in the central nervous system, and the analgesic effect will vary considerably during the intervals between doses. Theoretically, more stable analgesic effects could be obtained if the plasma opioid concentration would remain constant between patient demands and if the patient could stepwise increase or decrease the opioid concentration to a desired level.

Anesthesiology, V 79, No 3, Sep 1993
Computer-controlled infusion (CCI) techniques have been described for intraoperative use. Computer-controlled infusion allows automatic adjustment of the infusion rate to maintain a desired target concentration of the drug, minimizing the fluctuations in plasma concentrations. When opioids are administered using CCI techniques intraoperatively, it would be logical to extend this technique into the postoperative period for postoperative analgesia. Kenny et al.† used a computer-controlled infusion of alfentanil for postoperative pain relief and reported a good overall quality of analgesia after major vascular surgery. However, comprehensive basic information on the relationship between the plasma concentration of alfentanil and the analgesic effect in the postoperative setting is still limited.

The performance of a CCI system depends largely on how well the supplied pharmacokinetic data match the pharmacokinetics of the individual patient. Ideally, the computer should be programmed with individual pharmacokinetic data. However, in practice, individual pharmacokinetic data are seldom available. Pharmacokinetic data, derived from either volunteers or patients during surgery, are not necessarily relevant in the postoperative period when long-term infusions are used and required plasma concentrations are much lower than those required intraoperatively.

In this study, we evaluated the feasibility of a CCI of alfentanil for postoperative pain relief over a 36-h period. In addition, we examined the analgesic concentration-effect relationship for alfentanil in the postoperative period, and determined the effect of time on this relationship. We also prospectively tested the population pharmacokinetic data of Maitre et al. in a CCI for postoperative analgesia. In addition, two other sets of pharmacokinetic data, previously reported by Scott et al. and Lemmens et al., were evaluated.

Materials and Methods

Subjects

After obtaining approval from the Medical Ethics Committee and informed consent, 25 patients, ASA physical status 1 or 2, aged 21–65 yr, scheduled for orthopedic surgery under general anesthesia lasting longer than 1 h, were studied. Patients with a history of cardiovascular, pulmonary, hepatic, or renal disease or with rheumatoid arthritis were excluded from the study. Also excluded were patients who had taken opioids in the preceding month.

Computer-Controlled Infusion System

A computer-controlled infusion pump was used for the administration of alfentanil. The computer (Atari Portfolio, Okasaki, Japan) was interfaced to a syringe pump (Ohmeda 9000, Stretor, U.K.) via a serial RS232 communication channel. The software, written in Pascal by one of the authors, was supplied with population pharmacokinetic data reported by Maitre et al.

The system allowed a theoretical target plasma concentration of alfentanil to be rapidly attained and maintained. To achieve this, the infusion range was changed every 10 s by a computer controlling the infusion pump. The algorithm for the computation of the infusion rate during each 10-s time segment is based on equations described by Hull. Thus, based on the implemented three-compartment pharmacokinetic data, the computer keeps track of the concentrations of alfentanil in each of the three compartments of the model. After calculating the concentrations at any time, the computer calculates the infusion rate that is needed during the next 10 s to reach the new target (central compartment) plasma concentration, or to maintain the unaltered target plasma concentration, after this 10-s period. Subsequently, the concentrations in the compartments are again calculated, a new infusion rate computed, and so on.

If the computed infusion rate exceeds the preset maximum infusion rate of the pump (200 ml/h), the infusion rate is set to the maximum, and this is maintained until the plasma concentration, calculated (predicted) by the computer, matches the target concentration, which, in this case, takes longer than 10 s. This will be the case with a large stepwise increase in the target concentration. The infusion rates, averaged over 1-min intervals, were stored on a 128-Kb Portfolio memory card (Atari, Sunnyvale, CA). If the target concentration was changed, infusion rates were stored every 5 s from immediately before the change until the new predicted concentration was reached. To maximize safety, the maximum infusion rate of the Ohmeda pump was limited to 200 ml/h. Intraoperatively, a solution containing 0.5 mg/ml alfentanil was used. For postoperative use, the solution was diluted to 0.25 mg/ml.

Anesthesiology, V 79, No 3, Sep 1993
Table 1. Changes in Target Plasma Concentration (Cp) of Alfentanil Related to Patient Status for the Determination of the Minimum Effective Analgesic Concentration

<table>
<thead>
<tr>
<th>Patient Status</th>
<th>Change in Cp (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient is oriented and indicated a need for additional analgesia</td>
<td></td>
</tr>
<tr>
<td>VAS score ≥4.0</td>
<td>10†</td>
</tr>
<tr>
<td>VAS score <4.0</td>
<td>5†</td>
</tr>
<tr>
<td>Patient indicated no need for additional analgesia</td>
<td></td>
</tr>
<tr>
<td>VAS score ≥2.5</td>
<td>5‡</td>
</tr>
<tr>
<td>VAS score <2.5</td>
<td>10‡</td>
</tr>
</tbody>
</table>

ml. The system performance was validated using Euler's method, supplied with the volumes delivered, and recorded by the infusion pump. This validation showed that predicted concentrations (based on actually given volumes by the infusion pump) were, on average, 1% lower than the target concentrations.

Anesthetic Technique

The anesthetic technique was standardized. Premedication was with oral temazepam, 0.3 mg/kg to the nearest 10 mg, 1 h before surgery. On the patient’s arrival in the operating room, ECG electrodes were attached and blood pressure was measured. An intravenous cannula was placed in a large forearm vein. Pancuronium, 0.02 mg/kg, was given, and then anesthesia was induced by computer-controlled infusion of alfentanil and 66% nitrous oxide in oxygen. The target plasma concentration for induction was 400 ng/ml, to be achieved in 3 min. When the CCI device predicted that the target plasma concentration for induction was reached and consciousness had not been lost, 0.15–0.3 mg/kg etomidate was given. Succinylcholine, 1 mg/kg, was given to facilitate intubation of the trachea. After induction of anesthesia, a 20-G catheter was introduced into a radial artery for blood pressure monitoring and collection of blood samples. Anesthesia was maintained with 66% nitrous oxide in oxygen, and alfentanil. Pancuronium was given for muscle relaxation. When signs of inadequate anesthesia developed, the target concentration of alfentanil was increased by 20–50 ng/ml. Inadequate anesthesia was defined by the following criteria: (1) increase in systolic blood pressure by more than 15 mmHg above normal for the patient (the normal systolic blood pressure was defined as the mean of three systolic blood pressures measured on the day of admission to the hospital, at the administration of premedication, and just before induction); (2) a heart rate higher than 90 beats/min in the absence of hypovolemia; (3) other autonomic signs, such as sweating, flushing, or epiphora; and (4) somatic responses, such as movements, swallowing, coughing, grimacing, or eye movement.

If a patient did not respond during a 10-min period, the target plasma concentration of alfentanil was decreased by 20 ng/ml. At the end of surgery, the computer-controlled infusion of alfentanil and nitrous oxide were discontinued and residual neuromuscular block was antagonized with 0.5 mg atropine and 1 mg neostigmine. The trachea was extubated after the patient had recovered consciousness and when adequate ventilation had been established (respiration rate > 8 breaths/min, end-tidal CO2 < 6.5 vol%, and tidal volume > 7 ml/kg). After tracheal extubation, the patient was transported to the recovery room and supplemental oxygen was routinely given. Supplemental oxygen was continued on the ward, if the patient had an SpO2 < 90% while breathing room air.

Postoperative Management

The patient was instructed to report the onset of pain to one of the investigators. At that moment, the patient’s pain was scored using a 10-cm visual analog scale (VAS), and the degree of sedation was scored using a five-point scale: (1) awake, oriented, initiates conversation; (2) sleepy, oriented, initiates conversation; (3) sleepy, oriented, does not initiate conversation; (4) very drowsy, disoriented, does not initiate conversation; and (5) stupor, disoriented, does not initiate conversation.

If the sedation score was ≤ 3, the computer-controlled infusion of alfentanil was restarted with a target concentration equal to the plasma concentration of alfentanil predicted by the computer at that moment. After 15 min, the patient’s sedation and pain scores were again assessed, and the plasma concentration was increased or decreased according to criteria described in table 1. These assessments and adjustments were repeated at 15-min intervals until the patient, while oriented, indicated no need for additional analgesia, and had a VAS score < 3. When these criteria were met, the target concentration was maintained at the corresponding level. At 9:00 PM that evening and at 9:00 AM and 9:00 PM on the first postoperative day, this procedure was again started. Again, every 15 min, the target plasma concentration was readjusted until the

Anesthesiology, V 79, No 3, Sep 1993
Table 2. Pharmacokinetic Data: The Central Volume (Vc) and Rate Constants of the Studied Pharmacokinetic Data Sets

<table>
<thead>
<tr>
<th></th>
<th>Maitre et al.</th>
<th>Scott et al.</th>
<th>Leemens et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>Vc</td>
<td>2.185</td>
<td>4.106</td>
<td>4.174</td>
</tr>
<tr>
<td>Male</td>
<td>0.111 × weight (kg)</td>
<td></td>
<td>0.2618</td>
</tr>
<tr>
<td>Female</td>
<td>0.111 × 1.15 × weight (kg)</td>
<td>0.214</td>
<td>0.1219</td>
</tr>
<tr>
<td>k12</td>
<td>0.1040</td>
<td></td>
<td>0.113</td>
</tr>
<tr>
<td>k21</td>
<td>0.0673</td>
<td></td>
<td>0.017</td>
</tr>
<tr>
<td>k13</td>
<td>0.0170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k31</td>
<td>≤40 yr</td>
<td>0.0126</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>40 yr</td>
<td>0.0126 − [0.000113 × (age − 40)]</td>
<td>0.091</td>
</tr>
<tr>
<td>k10</td>
<td>≤40 yr</td>
<td>0.356/Vc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>40 yr</td>
<td>(0.356 − [0.00269 × (age − 40)])/Vc</td>
<td></td>
</tr>
</tbody>
</table>

Blood Samples and Alfentanil Assay

Postoperative arterial blood samples (3 ml) for the measurement of the plasma concentration of alfentanil were collected before every change in target plasma concentration of alfentanil and 15 min after the target plasma concentration was achieved. The maximum amount of blood collected was restricted to 125 ml per patient. Plasma was obtained by centrifugation and stored at −20°C until analysis. A capillary gas chromatographic technique was used to determine the plasma concentration of alfentanil. The detection limit was 0.1 ng/ml plasma. The coefficient of variation in the concentration range (> 1 ng/ml) encountered in this study was < 5%.

Data Analysis

Pharmacokinetics and Computer Simulations.

The performance of the computer-controlled infusion system, implemented with the population pharmacokinetic data set from Maitre et al.5 (table 2), was assessed by examining the bias and inaccuracy as described by Raemers et al.8 Bias is a measure of a systematic failure to achieve the target plasma concentration. Inaccuracy is a measure of the expected failure to achieve the target plasma concentration. Both bias and inaccuracy are aggregated measures of the performance of the system. For each blood sample, the performance error (PE) was calculated as

\[PE = \frac{(C_p - C_{pred})}{C_{pred}} \times 100 \]

where \(C_p \) = the measured plasma concentration of alfentanil, and \(C_{pred} \) = the corresponding predicted
Table 3. Patient Characteristics, Type of Surgery, Duration of Anesthesia, and Onset of Postoperative Pain

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Weight (kg)</th>
<th>Type of Surgery</th>
<th>Duration of Anesthesia (min)</th>
<th>Intraoperative Alfentanil Consumption (µg·kg⁻¹·min⁻¹)</th>
<th>Onset of Pain (min)</th>
<th>Postoperative Alfentanil Consumption (µg·kg⁻¹·h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>24</td>
<td>64</td>
<td>Bankart repair shoulder</td>
<td>143</td>
<td>2.3</td>
<td>65</td>
<td>18.6</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>22</td>
<td>71</td>
<td>Block resection tumor tibia allograft</td>
<td>165</td>
<td>1.4</td>
<td>45</td>
<td>24.8</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>26</td>
<td>87</td>
<td>Putti-Platt shoulder</td>
<td>135</td>
<td>3.3</td>
<td>367</td>
<td>8.5</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>28</td>
<td>46</td>
<td>Resection giant cell tumor distal radius</td>
<td>235</td>
<td>2.5</td>
<td>107</td>
<td>11.4</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>36</td>
<td>85</td>
<td>Resection osteoid osteoma humerus</td>
<td>133</td>
<td>2.5</td>
<td>115</td>
<td>4.8</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>45</td>
<td>78</td>
<td>Acromionplasty</td>
<td>165</td>
<td>2.0</td>
<td>180</td>
<td>14.8</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>29</td>
<td>97</td>
<td>Putti-Platt shoulder</td>
<td>172</td>
<td>1.6</td>
<td>121</td>
<td>14.5</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>31</td>
<td>57</td>
<td>Resection giant cell tumor femur condyl</td>
<td>141</td>
<td>2.1</td>
<td>223</td>
<td>8.5</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>51</td>
<td>69</td>
<td>Reconstruction elbow</td>
<td>118</td>
<td>2.0</td>
<td>250</td>
<td>6.7</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>30</td>
<td>90</td>
<td>Putti-Platt shoulder</td>
<td>158</td>
<td>2.5</td>
<td>113</td>
<td>23.9</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>24</td>
<td>63</td>
<td>Shell operation hip</td>
<td>187</td>
<td>1.9</td>
<td>230</td>
<td>1.3</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>43</td>
<td>75</td>
<td>Resection allograft humerus</td>
<td>194</td>
<td>1.6</td>
<td>249</td>
<td>6.9</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>47</td>
<td>89</td>
<td>Resection malignant giant cell tumor</td>
<td>316</td>
<td>1.4</td>
<td>255</td>
<td>10.7</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>27</td>
<td>73</td>
<td>Putti-Platt shoulder</td>
<td>170</td>
<td>1.5</td>
<td>153</td>
<td>7.3</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>32</td>
<td>65</td>
<td>Resection giant cell tumor fibula</td>
<td>146</td>
<td>2.4</td>
<td>194</td>
<td>12.1</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>41</td>
<td>91</td>
<td>Revision total hip</td>
<td>216</td>
<td>1.6</td>
<td>113</td>
<td>18.0</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>59</td>
<td>83</td>
<td>Total hip</td>
<td>142</td>
<td>1.6</td>
<td>320</td>
<td>1.7</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>26</td>
<td>71</td>
<td>Resection distal clavicle</td>
<td>166</td>
<td>1.9</td>
<td>220</td>
<td>7.0</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>34</td>
<td>65</td>
<td>Boneplasty of proximal femur</td>
<td>185</td>
<td>2.4</td>
<td>195</td>
<td>16.3</td>
</tr>
<tr>
<td>20</td>
<td>M</td>
<td>21</td>
<td>96</td>
<td>Bankart repair shoulder</td>
<td>178</td>
<td>2.8</td>
<td>116</td>
<td>30.8</td>
</tr>
<tr>
<td>Mean</td>
<td>M/F</td>
<td>33.8</td>
<td>75.8</td>
<td></td>
<td>173.3</td>
<td>2.1</td>
<td>183</td>
<td>14.8</td>
</tr>
<tr>
<td>(SD)</td>
<td>12/8</td>
<td>(10.3)</td>
<td>(13.4)</td>
<td></td>
<td>(43.0)</td>
<td>(0.52)</td>
<td>(86.5)</td>
<td>(7.6)</td>
</tr>
</tbody>
</table>

Plasma concentration. The bias of the system is expressed as the median PE (MDPE) over all blood samples. The system accuracy is the median of the absolute values of the individual PEs (MDAPE). Median PE and MDAPE were calculated for each patient from all blood samples collected from that patient. In addition, MDPE and MDAPE were calculated from all blood samples collected from the entire population. Data points with $C_T = 0$ ng/ml and $C_p < 1$ ng/ml, where C_T is the target plasma concentration of alfentanil, were omitted from this analysis.

The performance of two other pharmacokinetic data sets, described by Scott et al.\(^4\) and Lemmens et al.\(^5\) (table 2), was assessed. Using these pharmacokinetic data sets and the original stored infusion rates, we calculated new predicted plasma concentrations of alfentanil for each patient. Subsequently, the performance of these sets was determined as described above, but with substitution of the newly predicted concentrations for the originally predicted concentrations.

Pharmacodynamics. The minimum effective analgesic concentration (MEAC) was defined as the measured plasma concentration of alfentanil at which the patient was oriented, indicated no need for additional analgesia, and had a VAS score < 3. The MEAC was determined for each patient at the four previously described observation times, i.e., at the onset of pain, at 9:00 PM on the day of surgery, and at 9:00 AM and 9:00 PM on the first postoperative day. Subsequently, the median MEAC at each observation time was determined from the individual MEACs at each time. A sigmoid E_{max} model was used to describe the concentration-effect relationship over all patients, at each aforementioned study time, according to the formula:

$$E = \frac{E_{max} \cdot C_p^\gamma}{C_p 50^\gamma + C_p^\gamma}$$

where E is the effect, defined as the percentage of patients who had a MEAC $\leq C_p$; C_p is the measured plasma concentration of alfentanil; E_{max} is the maximum effect (i.e., 100%); $C_p 50$ = the concentration corresponding with 50% of E_{max} (i.e., 50% of the patients have a MEAC $\leq C_p 50$); and γ = a dimensionless parameter indicating the slope of the curve. The model was fitted to the data using unweighted least-squares nonlinear regression. If, at any of the aforementioned times, the target con-
occluded within 24 h from the start of the study. In the other one patient, alfentanil was discontinued on the first postoperative morning because of $\text{SpO}_2 < 90\%$. An SpO_2 between 80 and 90% persisted for 4 days after discontinuation of alfentanil administration in this patient.

The demographic data of the 20 remaining patients (12 men and 8 women), details of the type of surgery, the duration of anesthesia, the intraoperative and the postoperative alfentanil consumption, and the time of onset of postoperative pain are presented in table 3. No patient needed naloxone to restore adequate ventilation after the termination of anesthesia. All patients were spontaneously breathing on arrival in the recovery room. Alfentanil infusion was restarted 183 ± 87 min after the end of anesthesia.

Pharmacokinetics

The plasma concentration of alfentanil *versus* time of a representative patient is shown in figure 1. In general, measured plasma concentrations of alfentanil were grossly parallel to the predicted plasma concentrations. Figure 2 shows the relationship between measured and predicted concentration of alfentanil for all blood samples. Figure 3 shows the performance error of all blood samples *versus* time in individual patients, as obtained with the implemented pharmacokinetic data of Maitre *et al.* No systematic over- or undershoot was seen at the start of the pain treatment. Time had no influence on the PE.

Results

Twenty-five patients were enrolled in the study. Five patients were excluded from the data analysis for the following reasons. In four patients, the arterial catheter concentration could be lowered to 0 in any of the patients, these patients were omitted from the nonlinear regression at that study time. These patients were considered as no longer requiring alfentanil.

Statistical Analysis

Data were examined for normality using the Shapiro-Wilk test and are presented as mean ± SD, or as median and 95% confidence interval (CI) or range, where appropriate. Adverse reactions are reported as frequency of the occurrence.

The comparative performance of the different pharmacokinetic data sets was examined by the multisample median test, followed by a multisample comparison test, when indicated. The influence of time on the PE was determined by the Spearman rank test. The intrindividual variability (time dependence) of the MEAC of alfentanil was examined by the Friedman test, followed by a Tukey test when indicated.

A value of $P < 0.05$ was regarded as the minimum level of statistical significance.

Anesthesiology, V 79, No 3, Sep 1993
Median PEs and MDAPEs are presented in Table 4. The bias of the system, calculated from all collected blood samples using the population pharmacokinetic data of Maitre et al., was 12% (CI 9--17%) and the inaccuracy was 28% (CI 24--32%) (Table 5). The medians, calculated from the MDPE and MDAPE of the individual patients, were 19% (CI 0.5--42%) and 31% (CI 11--45%).

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>MEAC1 (ng/ml)</th>
<th>MEAC2 (ng/ml)</th>
<th>MEAC3 (ng/ml)</th>
<th>MEAC4 (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43</td>
<td>47</td>
<td>64</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>87</td>
<td>94</td>
<td>94</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
<td>73</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>42</td>
<td>4</td>
<td><1</td>
</tr>
<tr>
<td>5</td>
<td>69</td>
<td>5</td>
<td><1</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>98</td>
<td>94</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>45</td>
<td>51</td>
<td>97</td>
<td><1</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>32</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>59</td>
<td>44</td>
<td>51</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>159</td>
<td>175</td>
<td>166</td>
<td>52</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>3</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>12</td>
<td>48</td>
<td>69</td>
<td>60</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td>83</td>
<td>60</td>
<td>66</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>38</td>
<td>37</td>
<td>30</td>
<td><1</td>
</tr>
<tr>
<td>15</td>
<td>54</td>
<td>53</td>
<td>72</td>
<td>63</td>
</tr>
<tr>
<td>16</td>
<td>113</td>
<td>82</td>
<td>85</td>
<td>89</td>
</tr>
<tr>
<td>17</td>
<td>48</td>
<td>22</td>
<td>14</td>
<td><1</td>
</tr>
<tr>
<td>18</td>
<td>46</td>
<td>19</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>91</td>
<td>80</td>
<td>79</td>
<td>122</td>
</tr>
<tr>
<td>20</td>
<td>105</td>
<td>121</td>
<td>140</td>
<td>98</td>
</tr>
<tr>
<td>Median</td>
<td>59</td>
<td>52</td>
<td>65</td>
<td>43†</td>
</tr>
<tr>
<td>Range</td>
<td>26-159</td>
<td>3-175</td>
<td><1-166</td>
<td><1-122</td>
</tr>
<tr>
<td>Median*</td>
<td>59</td>
<td>52</td>
<td>69</td>
<td>61‡</td>
</tr>
<tr>
<td>Range*</td>
<td>26-159</td>
<td>3-175</td>
<td>4-166</td>
<td>10-122</td>
</tr>
</tbody>
</table>

MEAC1 = at the onset of pain; MEAC2 = at 9 AM on the day of surgery; MEAC3 = at 9 AM on the first postoperative day; MEAC4 = at 9 AM on the first postoperative day; = onset of pain in patient 3 was not until the second study time.

* Patients with MEAC < 1 ng/ml were excluded (corresponding target concentrations were zero).
† MEAC4 < MEAC1, MEAC2, MEAC3, P < 0.05.
‡ MEAC4 < MEAC1, MEAC2, P < 0.05.
The bias and inaccuracy obtained after computer simulation with the other pharmacokinetic data sets are shown in Table 5. The bias, obtained with the pharmacokinetic data of Maitre et al. (12%) and Lemmens et al. (11%), was significantly smaller than that obtained with the data of Scott et al. (−35%) (P < 0.001).

Pharmacodynamics

The minimum effective analgesic concentrations of alfentanil at the four observation times are shown in Table 6. The intersubject variability was substantial, as shown by the range at the different observation times. For the 19 patients who had a MEAC assessed at all four study times, the MEAC at 9:00 PM on the first postoperative day was significantly lower than the MEAC at the 3 other study times. The target plasma concentration could be decreased to zero in two patients at the third (first postoperative day, 9:00 AM) and six patients at the fourth (first postoperative day, 9:00 PM) observation time. In these patients, the computer-controlled infusion of alfentanil was maintained until the predicted alfentanil concentration was < 1 ng/ml. Corresponding measured plasma concentrations also were

Table 7. Cₜ₅₀ (ng/ml), γ, and Standard Error Obtained by Fitting a Sigmoid Eₘₐₓ Function to the Percentage of Patients with a MEAC ≤ Cₜ.

<table>
<thead>
<tr>
<th>MEAC</th>
<th>Cₜ₅₀ (ng/ml)</th>
<th>SE (ng/ml)</th>
<th>γ</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAC₁</td>
<td>58.3</td>
<td>1.0</td>
<td>3.3</td>
<td>0.4</td>
</tr>
<tr>
<td>MEAC₂</td>
<td>48.8</td>
<td>1.1</td>
<td>2.6</td>
<td>0.2</td>
</tr>
<tr>
<td>MEAC₃</td>
<td>60.4</td>
<td>2.4</td>
<td>2.7</td>
<td>0.3</td>
</tr>
<tr>
<td>MEAC₄</td>
<td>54.6</td>
<td>2.4</td>
<td>3.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>

MEAC₁ = at the onset of pain; MEAC₂ = at 9 PM on the day of surgery; MEAC₃ = at 9 AM on the first postoperative day; MEAC₄ = at 9 PM on the first postoperative day.

* Also see Figure 4.

Fig. 4. Relationship between the plasma concentration of alfentanil and the percentage of patients having a MEAC ≤ Cₜ (points) at the four observation times. Cumulative concentration-effect curves (solid lines) were obtained by fitting a sigmoid Eₘₐₓ model. (MEACs are reported in Table 6, Cₜ₅₀ and γ are described in Table 7.)
< 1 ng/ml. If patients who no longer required alfentanil (C_T = 0) were excluded, there was still a statistical significant effect of time on MEAC: MEACs at 9:00 PM on the first postoperative day were significantly lower than the MEACs obtained at the first and the third assessment. The cumulative alfentanil plasma concentration-effect curves for each observation time, based on the data given in table 6, are shown in figure 4. The calculated C_p50 values and slopes of the curves are presented in table 7.

Adverse Effects

Respiration rate and postoperative SpO₂ were always within the clinically acceptable range, except for one patient, who was excluded from the data analysis. Hypotension, defined as a decrease in blood pressure of more than 15% from preoperative control values, did not occur. Side effects that occurred during the treatment period were nausea, vomiting, urinary retention, and itching. Nausea and vomiting occurred in 18 patients. For 12 patients, an antiemetic was indicated and given. Nine patients, seven men and two women, had urinary retention that required catheterization of the urinary bladder. Mild itching was reported in one patient, but no therapy was indicated. Despite these side effects, all patients were satisfied with this method of providing analgesia.

Discussion

Although alfentanil is widely used intraoperatively, there have been relatively few studies investigating its efficacy as a postoperative analgesic. Andrews et al.¹⁰ used a postoperative infusion of 20 μg·kg⁻¹·h⁻¹ alfentanil for 1 h in patients after body surface surgery. They reported adequate analgesia, but described depression of CO₂ responsiveness to 50% of its preoperative value with only moderate effects on the respiratory minute volume and PaCO₂.

Compared with constant-rate infusions, a major advantage of the administration of alfentanil by CCI is that the plasma concentration can be more easily adjusted to the needs of the patient and maintained at a stable level. The pharmacologic properties of alfentanil¹¹ make it the most suitable of the currently available opioids for use in a CCI system. Its onset of action is very rapid, because it equilibrates rapidly between blood and brain.⁴ In addition, fast distribution and elimination allow rapid changes to the desired target plasma concentrations, even after prolonged infusions. Subsequently, the rapid brain-blood equilibration will also result in correspondingly rapid changes of effects, when either an increase or decrease in analgesic effect or fewer opioid side effects are indicated.

From a pharmacokinetic point of view, the optimal lockout time or the optimal background infusion varies in time during the therapy. With conventional PCA, it is impossible to implement these pharmacokinetic principles. Theoretically, low or no background infusion and long lockout times can lead to ineffective analgesic concentrations at the start of therapy. On the contrary, a short lockout time or a high background infusion can result in overdosing the patient at a later stage. With computer-controlled infusions, the pharmacokinetic principles can be used to obtain the optimal plasma concentrations according to the patient's need at any time.

Compared with PCA administration, a CCI device theoretically has the advantage that more stable analgesic effects can be obtained. Like a conventional PCA system, the CCI system can be made patient controlled. For example, if the patient required more effective analgesia, he could increase the target concentration by pushing a button. In addition, the target concentration may be decreased in the absence of any demands for a preset time period (e.g., 1 h). In this study, we intentionally abstained from the patient-control option, because this would result in less consistent MEAC determinations (see pharmacodynamics section).

Pharmacokinetics

Hill et al.¹²,¹³ investigated a CCI system with morphine or alfentanil in patients suffering from oral mucositis pain after bone marrow transplantation, and reported excellent pain relief, with only minor side effects. In their study, the CCI system was programmed with pharmacokinetic data of the individual patients, which had been previously determined. However, in general, individually predetermined pharmacokinetic data are not available. Therefore, the application of a relevant and valid pharmacokinetic data set in a CCI system is important.

The current study demonstrates that administration of alfentanil can be achieved with an acceptable bias when the system is supplied with appropriate pharmacokinetic data. The bias using the pharmacokinetic data sets described by Maitre et al.⁵ (12%) and Lemmens et al.⁵ (11%) were small enough to warrant application in the CCI system. However, the bias obtained

Anesthesiology, V 79, No 3, Sep 1993
with the pharmacokinetic data set described by Scott et al. It was unacceptably large (~35%).

In an intraoperative study, designed to verify their original data, Maitre et al. reported a bias of ~8%. In contrast, Raemer et al. found a considerable bias of 53% when prospectively testing the data of Maitre et al., but reported only a 1% bias associated with the data of Scott et al. They concluded that Scott's pharmacokinetic data set was more appropriate for use in a CCI system than that of Maitre. We have no explanation for the discrepancies encountered in evaluations of the performance of different pharmacokinetic data sets implemented in a CCI. Methodologic differences in the various study designs and large population variability have both been suggested as contributing factors.

Even after implementation of population pharmacokinetic data, the performance of the system in individual patients still shows a large variability, reflecting the existing interindividual variability in the pharmacokinetics of alfentanil. It would be expected that the performance of a CCI system will be much improved when the system is supplied with the patient's individual pharmacokinetic data. Hill et al. tested the performance of a CCI system using alfentanil, supplied with individual pharmacokinetic data, for the relief of experimental pain in healthy male volunteers. The mean bias was small, and varied from ~8% (SD 23%), at a target concentration of 20 ng/ml, to 13% (SD 25%), at a target concentration of 80 ng/ml. The corresponding mean absolute prediction errors varied from 20% (SD 15%) to 23% (SD 15%), respectively. Thus, although both MDPE and MDAPE are smaller when the CCI system is provided with individual pharmacokinetic data, the gain compared with implementation of appropriate population pharmacokinetic data may be minimal. We feel that a MDPE of less than 15% and a MDAPE of less than 30% are acceptable for postoperative patient care, provided that the predicted concentration parallels the measured plasma concentration and the PE is approximately constant over the period of infusion. In this study, we clearly demonstrated that time did not influence the PE.

The performance error, as used in this and other studies, is a measure of how well the measured concentration compares with the predicted concentration. A performance error of, for example, ~50% (measured concentration 50% of predicted) is as good or as bad as a performance error of ~50% (measured concentration 150% of predicted), and twice as bad as a performance error of 25%. However, the clinical consequence of a ~50% (a twofold) error in terms of the resulting error in effect will generally differ from that of a performance error of ~50% (a 1.5-fold error), because the concentration-effect relationship is likely to be nonlinear (logarithmic or sigmoid shaped). However, the error in effect with a ~50% performance error is not necessarily greater than that with a ~50% error. For example, if we assume either a logarithmic or a sigmoid-shaped concentration-effect relationship, and the predicted concentration is the minimum effective analgesic concentration (the threshold), a ~50% performance error may decrease the effect below threshold, i.e., the change in effect will be 100% and the patient has a need for additional analgesia. In the same situation, a ~50% performance error may increase the intensity of effect by much more than 100% if the concentration-effect relationship is steep and the patient will be sedated or respiratory depressed. In other words, the percentage of change in effect with a given performance error is dependent on the concentration-effect relationship and on the effect corresponding with the target. Therefore, it is not possible to judge the implications of a given performance error in terms of the change in effect, unless the concentration-effect relationship is known, which is not the case for an individual patient.

The only goal of the calculation of performance errors in this study was to derive measures that would allow us to judge the applicability of three pharmacokinetic data sets in a computer-controlled infusion of alfentanil for postoperative analgesia. The message from this study is that the data sets of both Maitre et al. and Lemmens et al. are useful in that the bias and inaccuracy resulting from implementation of these data sets are within reasonable limits. Nevertheless, considering the variability in MEAC, as shown in table 6, and the above-mentioned consequences of an either positive or negative performance error, one should never fail to titrate a computer-controlled infusion to the patient's needs.

Pharmacodynamics

The intraoperative pharmacodynamics of alfentanil have been extensively studied. Alfentanil plasma concentration versus effect curves for intubation, skin incision, skin closure, and spontaneous ventilation have been described by Ausens et al. and Lemmens et al. However, information on the intraoperative pharmacodynamics of alfentanil cannot be extrapolated to the postoperative patient.
We designed our study to reduce the extraneous influences on the pharmacodynamics of alfentanil to a minimum. Only patients undergoing major orthopedic surgery were studied, and alfentanil was the only opioid used intra- and postoperatively. Because the investigators were not blinded to the target concentration, precisely and rigidly defined criteria were used to control the administration of alfentanil to minimize the influence of investigator bias on the results. Our definition of the MEAC is based on three features: (1) the patient had to be oriented; (2) the quality of analgesia had to be adequate without the need for additional analgesia, and (3) VAS score had to be < 3. These criteria gave both the patient and the investigator explicitly defined guidelines to work with.

A pharmacologic endpoint based on a subjective parameter, such as the patient's need for additional analgesia, can be criticized. Nonetheless, we feel that this is a better criterion to work with than the VAS score alone. The answer to the question of the adequacy of analgesia can only be either affirmative or negative, and, therefore, is the basis for the direction of the change in target concentration. Until there is an objective, valid measurement for the intensity of pain, the patient is, and can be, the only one to declare how effective he considers the treatment.

We found that MEAC varied considerably between patients (from < 1 to 175 ng/ml), and was significantly lower at 9:00 PM on the first postoperative day. The variability is consistent with that reported in other studies. Owen et al.20 tested a PCA system using alfentanil after upper abdominal surgery. They were unable to identify an optimal bolus dose and infusion rate. The concentration of alfentanil just before the patients made demands, i.e., the maximum concentration still associated with pain (MCP), ranged from 21 to 101 ng/ml. In another study,22 in which they investigated the effect of supplementing PCA alfentanil with a background infusion, Owen et al. reported a MCP 4–8 h postoperatively of 58 ng/ml for the PCA only group and 80 ng/ml in the PCA + infusion group. Of the 40 patients studied, 13 patients were withdrawn because of inadequate analgesia or respiratory depression. In a study using PCA alfentanil, supplemented by a low-dose fixed-rate infusion of alfentanil, for patients recovering from major abdominal or orthopedic surgery, Lehmann et al.23 reported a MCP range from 0.6 to 99 ng/ml. Camu et al.24 compared the efficacy of intravenous and epidural infusions of alfentanil in patients after abdominal hysterectomy. After the intravenous infusion was stopped, 20 h postoperatively, the mean MCP was 46 ng/ml.

The validity of the MCP/MEAC concept in PCA has been challenged by Owen et al.22,25 It is known that patients usually prefer PCA for postoperative analgesia, despite sometimes suboptimal pain relief. By being in control of pain relief, the patients seek diminution in pain and are often satisfied if they only perceive less pain after a demand. The values for MCP determined in a PCA setting may, therefore, underestimate the actual MCP/MEAC values. In our study, using a continuous computer-controlled infusion, an effective plasma concentration of alfentanil was maintained, and, accordingly, the MEAC in each individual patient was defined more accurately.

All previous studies, as well as our study, have shown a large variability in MCP or MEAC. A factor that contributes to this variability is the severity of postoperative pain is variable in intensity and duration. In this study, 6 out of 20 patients no longer required alfentanil at 9:00 PM on the first postoperative day; their target concentration could be lowered to 0 ng/ml. For the patients requiring analgesia, the MEAC remained virtually constant until 9:00 AM on the first postoperative day. Twelve hours later, the MEAC was significantly lower. Owen et al.21 reported the mean MCP for alfentanil after upper abdominal surgery as 58 ± 25 ng/ml on the day of surgery and 37 ± 24 ng/ml on the first postoperative day. However, they studied their patients for only 24 h, and included all patients in their calculation of MCP. By excluding the patients having a $C_T = 0$ ng/ml at the different time points, the median MEACs so obtained give the clinician a guideline for the effective concentration of alfentanil at that time for the patients still needing analgesia.

Adverse Effects

The safety of a computer-controlled infusion in the postoperative setting still has to be investigated. We did not encounter any respiratory depression in our 20 patients, in contrast to the experience of others, using PCA alfentanil21 or constant-rate infusions of alfentanil.10,24,26 Sedation did not occur in our patients. There was a high incidence of nausea and vomiting (18/20), and 12 of 20 patients needed antiemetic therapy. This incidence is higher than that reported in most studies in patients given opioids for postoperative analgesia, which varies from 0–60%.23–25 We did not give prophylactic antiemetics. Antiemetics were only
given when a patient vomited or complained of sub-
stantial nausea.

Urinary retention occurred in 45% of our patients. A
high incidence has been reported earlier\(^{27}\) in patients
undergoing joint replacement surgery. In that study,
the postoperative use of opioids did not correlate with
the occurrence of urinary retention.

Conclusions

This study demonstrated the feasibility of computer-
controlled administration of alfentanil in providing
postoperative analgesia. Implementation of population
pharmacokinetic data resulted in an acceptable bias
and inaccuracy of the CCI system. The minimum ef-
ective analgesic concentration of alfentanil providing
adequate analgesia varies widely between patients, and
generally decreases during the first postoperative day.
The wide variability in pharmacodynamics can be
overcome by tailoring the target plasma concentration
to the individual patient's needs. We believe that a
computer-controlled infusion of alfentanil has potential
for providing effective postoperative analgesia.

The authors wish to thank the physicians and nursing staff of
the department of Orthopaedic Surgery, under whose care the patients
were admitted, for their willing cooperation; and G.E.R. Griever, M.
Sosef, and J. Meineez, for their valuable clinical assistance.

References

1. Glass PSA, Jacobs JR, Reves JG: Intravenous anesthetic delivery,
Anesthesia. Edited by Miller RD. New York. Churchill-Livingstone,
1990, pp 367–388

2. Raemer DB, Buschman A, Varvel JR, Phillip BK, Johnson MD,
Stcin DA, Shafer SL: The prospective use of population pharma-
cokinetics in a computer-driven infusion system for alfentanil.
ANESTHESIOLOGY 73:66–72, 1990

3. Maire P0, Vozeh S, Heykants J, Thomson DA, Stanski DR: Pop-
ulation pharmacokinetics of alfentanil: The average dose–plasma
concentration relationship and interindividual variability in patients.
ANESTHESIOLOGY 66:3–12, 1987

4. Scott J0, Pongrains KV, Stanski DR: EEG quantification of narcotic
effect: The comparative pharmacodynamics of fentanyl and alfentanil.

5. Lennons HM, Burn AGL, Hennis PJ, Gladines MPR, Bovill
JG: Influence of age on the pharmacokinetics of alfentanil: Gender

Heinemann, 1991, p 374

7. Woertle GM: Kinetics and Dynamics of Intravenous Anesthetics.
Oestergeist, Mesys, 1990, pp 18–21

8. Lennons HM, Burn AGL, Bovill JG, Hennis PJ, Gladines MPR:
Pharmacodynamics of alfentanil: The role of plasma protein binding.
ANESTHESIOLOGY 76:65–70, 1992

9. Levy KJ: Pairwise comparisons associated with the K indepen-

effects during and after continuous infusion of fentanyl or alfentanil.

11. Shafer SL, Varvel JR: Pharmacokinetics, pharmacodynamics,

12. Hill HF, Mackie AM, Jacobsen RC: Infusion-based patient-con-
trolled analgesia systems, Patient-Controlled Analgesia. Edited by
Ferrante FM, Ostheimer GW, Covino BG. Boston, Blackwell Scientific,
1990, pp 214–222

13. Hill HF, Jacobson RC, Coda BA, Mackie AM: A computer-based
system for controlling plasma opioid concentration according to pa-

14. Maire PO, Ausems ME, Vozeh S, Stanski DR: Evaluating the
accuracy of using population pharmacokinetic data to predict plasma
concentration of alfentanil. ANESTHESIOLOGY 68:59–67, 1988

15. Hill HF: Pharmacokinetic tailoring of computer-controlled al-
fentanil infusions, Pharmacokinetics and Pharmacodynamics. Volume
2: Current Problems, Potential Solutions. Edited by Kroboth PD, Smith
RB, Juhi RP, Cincinnati, Harvey Whitney Books, 1988, pp 158–166

performance of computer-controlled infusion pumps. J Pharmac-

17. Glass PSA, Jacobs JR, Smith LR, Ginsberg B, Quill T, Bai SA,
Reves JG: Pharmacokinetic model-driven infusion of fentanyl: As-
essment of accuracy. ANESTHESIOLOGY 73:1082–1090, 1990

18. Shafer SL, Varvel JR, Aziz N, Scott JC: Pharmacokinetics of
fentanyl administered by computer-controlled infusion pump. ANES-
THESIOLOGY 78:1091–1102, 1990

19. Ausems ME, Hug CC, Stanski DR, Burn AGL: Plasma concen-
trations of alfentanil required to supplement nitrous oxide anesthesia

20. Lennons HM, Bovill JG, Hennis PJ, Burn AGL: Age has no
effect on the pharmacodynamics of alfentanil. Anaesth Analg 67:956–
960, 1988

21. Owen H, Brose WG, Plummer JL, Mather LE: Variables of pa-
tient-controlled analgesia. 3: Test of an infusion demand system using
alfentanil. Anaesthesia 45:452–455, 1990

22. Owen H, Currie JC, Plummer JL: Variation in the blood concen-
tration/analgesic response relationship during patient-controlled

23. Lehmann KA, Bibert N, Horsch-Haemeyer G: Postoperative
patient-controlled analgesia with alfentanil: Analgesic efficacy and
minimum effective concentrations. J Pain Symptom Manage 5:249–
258, 1990

24. Camu F, Debuquoy F: Alfentanil infusions for postoperative pain:
A comparison of epidural and intravenous routes. ANESTHESIOLOGY
75:171–178, 1991

25. Owen H, Plummer JL, Armstrong I, Mather LE, Cousins MJ:
Variables of patient-controlled analgesia. 1. Bolus size. Anaesthesia
44:7–10, 1989

26. O'Connor M, Pray-Roberts C, Sear JW: Alfentanil infusions:
Relationship between pharmacokinetics and pharmacodynamics in

27. Michelsohn JD, Latke PA, Scinberg ME: Urinary-bladder man-
agement after total joint replacement surgery. N Engl J Med 319:
321–326, 1988

Anesthesiology, V 79, No 3, Sep 1993