Desflurane Inhibits Hypoxic Pulmonary Vasoconstriction in Isolated Rabbit Lungs

Stephan A. Loer, M.D.,* Thomas W. L. Scheeren, M.D.,* Jörg Tarnow, M.D., F.R.C.A.†

Background: Inhalational anesthetics inhibit hypoxic pulmonary vasoconstriction (HPV) in vitro and in vivo with a half-maximum inhibiting effect (ED50) within concentrations applied for general anesthesia. Because it is unknown whether desflurane acts likewise, we studied its effect on HPV in isolated blood-perfused rabbit lungs and compared its ED50 with that of halothane.

Methods: Isolated blood-perfused rabbit lungs were randomly allocated to treatment with either desflurane (n = 6) or halothane (n = 6). HPV, defined as an increase in pulmonary arterial pressure (PAP) at constant flow, was elicited by decreasing inspiratory oxygen concentration from 20% to 3% for 4 min. This effect was determined without (control HPV) and with increasing concentrations of the anesthetics (fractin of inspired oxygen kept constant at 4.8 ± 0.2%, perfusate temperature at 37°C, and blood flow at 100 ml.min⁻¹).

Results: Before exposure to the anesthetics, PAP increased by 8.6 ± 1.9 cmH2O for all lungs within 4 min of hypoxia (control PAP for all lungs 19.6 ± 2.5 cmH2O). Desflurane decreased this effect in a concentration-dependent fashion with an ED50 of 1.45%, compared with that of halothane, with an ED50 of 1.75%.

Conclusions: Assuming that 1 minimum alveolar concentration (MAC) values of desflurane and halothane for rabbits are 8.9% and 1.3%, respectively, this study yields ED50 values for the inhibition of HPV of approximately 1.6 MAC for desflurane and 1.2 MAC for halothane (P not statistically significant).

(Key words: Anesthetics, volatile: desflurane, halothane. Lung: hypoxic pulmonary vasoconstriction; isolated rabbit lung.)

INHALATIONAL anesthetics inhibit hypoxic pulmonary vasoconstriction (HPV) in vitro and in vivo in animal experiments in a concentration-dependent fashion. 1-3 Whether desflurane, a new volatile agent acts likewise is unknown. Because most other inhalational anesthetics have a half-maximum inhibiting effect (ED50) of HPV within the therapeutic range it is of interest to study whether this applies also to desflurane. We therefore elicited HPV in blood-perfused isolated rabbit lungs ventilated with increasing concentrations of desflurane and halothane.

Materials and Methods

Isolated Lung Preparation

With approval of the Institutional Animal Care and Use Committee adult New Zealand White rabbits (body weight 3.4 ± 0.3 kg, mean ± SD) of either sex were anesthetized with 30 mg·kg⁻¹ pentobarbitonal sodium intravenously and randomly allocated to the desflurane or halothane group. After tracheostomy, the animals' lungs were ventilated with air at a tidal volume of 10 ml·kg⁻¹ and a rate of 30 min⁻¹ (respirator 683, Harvard, South Natick, MA). Heparin (1,000 IU·kg⁻¹) was injected 3 min before the rabbits were rapidly exsanguinated through the carotid artery. After midline sternotomy, the trachea, heart, and lungs were removed en bloc and perfusion cannulas were tied into the pulmonary artery and the left atrium via the left ventricle, with meticulous care taken to avoid pulmonary air embolism during preparation. The rabbit's autologous blood was used to fill the extracorporeal circulation circuit, and perfusion was instituted at a constant flow of 100 ml·min⁻¹, about 30 ml·min⁻¹·kg⁻¹ body weight (calibrated roller pump 16670, American Optical, Bedford, MA). The perfusate temperature was maintained at 37°C with a water bath, and pH was maintained between 7.34 and 7.45 by the addition of sodium bicarbonate, if necessary. The time from the start of exsanguination to the start of ex situ perfusion was less than 12 min.

After removal of the lungs from the chest they were inflated for a short period with positive pressures to 15 cmH2O until any visible atelectasis had resolved. Thereafter they were ventilated with 5% carbon dioxide in air and a positive end-expiratory pressure of 3 cmH2O maintained by a water seal in the expiratory

* Resident.
† Professor and Chair.

Received from the Department of Anesthesiology, Heinrich-Heine-University Düsseldorf. Submitted for publication January 25, 1995. Accepted for publication April 29, 1995.

Address reprint requests to Dr. Loer, Department of Anesthesiology, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany.
In preliminary studies we found that carbon dioxide variations of 0.2% around 4.8% and oxygen variations of 2% around 20% during normoxia and 0.1% around 3% during hypoxia had no measurable effects on HPV, so variations within these ranges were allowed. Premixed gases (5% carbon dioxide in air, 5% carbon dioxide and 3% oxygen in nitrogen) were used with flow meter-controlled addition of oxygen or carbon dioxide or both during ventilation with high concentrations of desflurane until the measured gas concentrations were again within the tolerated ranges.

All gases were supplied by Messer Griesheim GmbH (Duisburg, Germany), desflurane by Kabi Pharmacia (Milan, Italy), United Kingdom), and halothane by Hoechst AG (Frankfurt am Main, Germany). Dräger (Lübeck, Germany) vaporizers were used to deliver desflurane and halothane, respectively.

Measurements

Pulmonary arterial pressure (PAP), left atrial pressure, and airway pressures were measured continuously with electromanometers (P23 ID, Statham, Gould, Oxnard, CA). The zero reference level for these pressures was chosen at the top of the lung and balanced to atmospheric pressure. Perfusion oxygen and carbon dioxide tensions, pH (CMS 3 MK2, Radiometer, Copenhagen, Denmark) and hematocrit (Haematokrit-Zentrifuge, Hettich, Germany) were determined intermittently. Total lung weight was measured by a force transducer (FT 03, Grass Instruments, Quincy, MA). Inspiratory gas concentrations were measured continuously with an anesthetic gas monitor (PM 8050, Dräger).

Experiments

The perfused lungs were initially observed for 20 min to establish an isogravimetric state with a PAP of approximately 20 cmH₂O. If an isogravimetric state could not be attained experimental results were not used in this study. Left atrial pressure was adjusted above airway pressure (5 cmH₂O) at the beginning of the experiments by the height of the venous reservoir to attain zone 3 flow conditions excluding most likely vascular recruitment during increases of PAP.

HPV was elicited by a reduction of inspiratory oxygen concentration from 20% to 5% for 4 min during ventilation without (control HPV) and with randomized concentrations of desflurane (4.5, 9.0, 13.5, and 18.0%) and halothane (1.0, 2.0, and 3.0%). At every

Table 1. Effects of Desflurane and Halothane on Pulmonary Artery Pressure and Hypoxic Pressor Response

<table>
<thead>
<tr>
<th></th>
<th>Preanesthetic</th>
<th></th>
<th>Anesthetic</th>
<th></th>
<th>Postanesthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>4.5%</td>
<td>9.0%</td>
<td>13.5%</td>
<td>18%</td>
</tr>
<tr>
<td>Baseline PAP (cmH₂O)</td>
<td>19.0 ± 3.1</td>
<td>18.7 ± 3.2</td>
<td>18.5 ± 2.6</td>
<td>19.0 ± 2.4</td>
<td>17.9 ± 2.2</td>
</tr>
<tr>
<td>ΔPAP (cmH₂O)</td>
<td>8.7 ± 1.9</td>
<td>8.5 ± 2.1</td>
<td>6.6 ± 3.0*</td>
<td>4.7 ± 2.6*</td>
<td>3.6 ± 2.3*</td>
</tr>
<tr>
<td>Halothane</td>
<td>0%</td>
<td>1.0%</td>
<td>2.0%</td>
<td>3.0%</td>
<td>0%</td>
</tr>
<tr>
<td>Baseline PAP (cmH₂O)</td>
<td>20.2 ± 1.8</td>
<td>20.0 ± 1.9</td>
<td>19.2 ± 1.3</td>
<td>18.7 ± 1.4</td>
<td>19.1 ± 1.7</td>
</tr>
<tr>
<td>ΔPAP (cmH₂O)</td>
<td>8.6 ± 2.0</td>
<td>7.2 ± 2.4</td>
<td>2.9 ± 1.6*</td>
<td>0.9 ± 0.6*</td>
<td>9.2 ± 1.7</td>
</tr>
</tbody>
</table>

Values are mean ± SD (n = 6).

*ΔPAP = increase in pulmonary artery pressure with hypoxic ventilation.

Significant difference (P < 0.05) versus preanesthetic period within the group.

Anesthesiology, Vol 83, No 4, Sep 1995
new inspiratory concentration of the anesthetics, 10 min was allowed for equilibration. Inspiratory carbon dioxide concentration was kept constant.

ED$_{50}$ values for desflurane and halothane on pulmonary artery pressure increases during hypoxia were determined as the anesthetic concentrations at which 50% of the maximum pressure response to hypoxia during control HPV (absence of anesthetics) occurred.

To evaluate unspcific effects of a time factor, control HPV was induced before and after exposure to the anesthetics so that each lung served as its own control.

Statistics

All data are presented as mean ± SD, unless otherwise indicated. Within both groups, HPV during increasing anesthetics concentrations was compared with control HPV and analyzed by Wilcoxon’s signed-rank test. HPV, expressed as a percentage of control HPV, was used to assess ED$_{50}$ values of the dose–response relations in both groups after linear interpolation. Between both groups differences between means of control HPV and ED$_{50}$ values (after linear interpolation for each lung) were analyzed by Wilcoxon’s signed-rank test. A P value of less than 0.05 was considered to be statistically significant.

Results

HPV was studied in 12 rabbit lungs, allocated randomly to treatment with desflurane or halothane and perfused with autologous blood (hematocrit 35 ± 1%; pH 7.38 ± 0.02). There were no statistically significant differences between the groups in baseline PAP or the increase in PAP during hypoxia before (pianesthetic) and after administration of the anesthetics (postanesthetic) (table 1). Furthermore, within the groups, neither of these variables differed between the pre- and postanesthetic periods, so nonspecific time effects can most likely be excluded.

With the institution of hypoxia, PAP increased promptly in both groups and attained a plateau within the hypoxic period of 4 min. One typical time course of the hypoxic response in the absence and presence of increasing concentrations of desflurane is shown in

Anesthesiology, V 85, No 3, Sep 1995
INHIBITION OF HPV BY DESFLURANE

figure 1. In the absence of desflurane (control HPV), PAP attained a maximum within 2 min and remained constant during hypoxia. With subsequent normoxia this effect faded within 2–4 min. With increasing concentrations of desflurane the maximum effect decreased, but a plateau was reached within 4 min of hypoxia. The same pattern was observed in all experiments. Therefore it appeared justified to use the plateau values to determine the concentration–effect relations for both anesthetics in the individual lungs (fig. 2). With increasing concentrations of desflurane (from 0–18%) and halothane (from 1–3%), HPV decreased. The means of the effects as percentages of control HPV were used to estimate ED₅₀ values (fig. 3). Desflurane attenuated HPV in a concentration-dependent fashion, with an ED₅₀ of 1.4 ± 0.5%. In the halothane group the inhibition of control HPV was observed with an ED₅₀ of 1.7%. To compare the two groups, 1 minimum alveolar concentration (MAC) in rabbits was assumed to be 8.9% for desflurane and 1.39% for halothane. This approach revealed ED₅₀ values of 1.6 MAC for desflurane and 1.2 MAC for halothane. This difference was not statistically significant.

Discussion

HPV is important for regional ventilation–perfusion distribution, diverting pulmonary blood flow from hypoxic to normoxic alveolar regions. Several studies have provided evidence that volatile anesthetics attenuate this local vascular control mechanism. We have shown that desflurane acts likewise in isolated rabbit lungs.

Our experimental design allowed us to examine the direct effects of desflurane and halothane on HPV and to control secondary influences such as pH, carbon dioxide tension in perfusate, and pulmonary blood flow, which have been shown to influence HPV. To ensure that perfusate and thus oxygen tension in the pulmonary artery had little effect on alveolar oxygen tension during HPV, lungs were ventilated at about ten times the rate at which they were perfused. Because red blood cells play a crucial role in maintaining vascular reactivity to hypoxia, we perfused the lungs with autologous blood at normal hematocrit (33%) for rabbits.

Desflurane as well as halothane inhibited HPV in a concentration-dependent manner. We found ED₅₀ values of 14.5% for desflurane and 1.7% for halothane. Assuming the rabbit's MAC of desflurane to be 8.9% and 1.39% for halothane, this reveals similar ED₅₀ values for desflurane and halothane of 1.6 and 1.2 MAC, respectively, both ED₅₀ values being within the clinical range of 1–2 MAC.

Marshall et al. investigated the effects of anesthetics on HPV in isolated rat lungs and found ED₅₀ values of 0.47 MAC for halothane, 0.60 MAC for isoflurane, and 0.56 MAC for enflurane. These authors concluded that halogenated volatile anesthetics inhibit HPV with almost the same potency. The lower ED₅₀ value for halothane compared with that in our study may be due to differences in species (rats vs. rabbits), perfusate (autologous vs. autologous blood), hematocrit (18.5 vs. 33%), and lung perfusion (zone II vs. zone III).

Another study in isolated rabbit lungs (Japanese white) found ED₅₀ values of 0.85 MAC for isoflurane and 1.0 MAC for sevoflurane with perfusion under zone II conditions using autologous blood (hematocrit 10%). An in vivo study in dogs revealed an ED₅₀ value for isoflurane of 2.4%. Apparently, in addition to the investigated anesthetic and the species, study conditions in vivo vs. isolated lung; hematocrit; and lung perfusion conditions play a crucial role when HPV is investigated.

In summary, we have shown that desflurane inhibits HPV in blood-perfused rabbit lungs in a dose-dependent fashion, with 50% inhibition occurring at a concentration of 1.4 ± 0.5%, representing about 1.6 MAC.

The authors thank Professor J. O. Arndt for providing laboratory space, intellectual and technical support, and thoughtful review of the manuscript. They appreciate the technical support of Birgitt Berke and thank Kabi Pharmacia (Milton Keynes, United Kingdom) for supplying desflurane.

References

Anesthesiology, Vol. 83, No. 3, Sep 1995

Effect of Aminophylline on Metabolism and Diaphragmatic Fatigue

Drewicks M.D.,* David G. Nichols, M.D., James L. Robotham, M.D.,† and Robert S. Black, M.D.,†

Background: Diaphragmatic fatigue, for which aminophylline has been shown to have beneficial effects, is due to necrosis in the post-infarcted region. The mechanism of action of aminophylline on diaphragmatic fatigue is unclear. We used magnetic resonance spectroscopy (MRS) to determine diaphragmatic activation, foraminophylline and lactate. Methods: Lactate and amide lactate were calculated as a measure of diaphragmatic fatigue. Gas exchange and arterial blood gases were measured to calculate transdiaphragmatic mean arterial pressure – esophageal pressure gradient. Results: Aminophylline concentration was 2 mg/l and 5 mg/l in the AI and AI+ groups, respectively. Compound action potentials of the AI and AI+ groups were 30% after 25 min of pacing. Conclusions: Aminophylline concentration was not different between the AI and AI+ groups. Aminophylline concentration was lower in the AI+ group. Compound action potentials were not different between the AI and AI+ groups. Conclusions: Aminophylline concentration was not different between the AI and AI+ groups. Aminophylline concentration was lower in the AI+ group. Compound action potentials were not different between the AI and AI+ groups.

*Postdoctoral Fellow, Department of Pediatrics.
†Associate Professor, Department of Anesthesiology.
‡Assistant Professor, Department of Surgery.
§Assistant Professor, Department of Anesthesiology.

From the Departments of Anesthesiology, Surgery, and Radiology, Division of Anesthesia, The Johns Hopkins Medical Institutions. Accepted for publication August 18, 1995. Presented in part at the meeting of the Society for Anesthesiology, San Francisco, California, September 1995. Reprint requests to Dr. Nicholas, The Children’s Medical Care, 600 North Wolfe St, Baltimore, MD 21287-5711.