Intravenous Lidocaine and Bupivacaine Dose-dependently Attenuate Bronchial Hyperreactivity in Awake Volunteers

Harald Groeben, M.D., Andreas Schwalen, M.D., Stefan Irsfeld, Sven Stiegitz, Peter Liptert, M.D., Hans-Bezird Hopf, M.D.

Background: In standard textbooks, intravenous lidocaine is recommended for intubation of patients with bronchial hyperreactivity. However, whether and to what extent intravenous local anesthetics attenuate bronchial hyperreactivity in humans is unknown. Accordingly, nine awake volunteers with known bronchial hyperreactivity were subjected to an inhalational challenge with acetylcholine before and during intravenous infusion of lidocaine, bupivacaine, or placebo in a randomized, double-blinded fashion.

Methods: Baseline acetylcholine threshold concentrations were determined 3–5 days before initiation of the investigation. The response to the acetylcholine challenge was defined as hyperreactive, if forced expiratory volume in 1 s decreased by at least 20%. In addition, the acetylcholine threshold for a 100% increase in airway resistance was obtained by body plethysmography. On seven different days, the acetylcholine challenge was repeated at the end of a 30-min intravenous infusion period of three doses of lidocaine (1, 3, and 6 mg·min⁻¹) or bupivacaine (0.25, 0.75, and 1.5 mg·min⁻¹), during saline placebo infusion, respectively. Acetylcholine-threshold concentrations were presented with the respective plasma concentrations of the local anesthetic.

Results: The infusion of lidocaine and bupivacaine resulted in plasma concentrations (means ± SD) of 0.29 ± 0.11, 1.14 ± 0.39, and 2.02 ± 0.5 µg·ml⁻¹ for lidocaine and 0.31 ± 0.04, 0.31 ± 0.09, and 0.80 ± 0.18 µg·ml⁻¹ for bupivacaine, respectively. Compared to baseline, the acetylcholine threshold for a 20% decrease of forced expiratory volume in 1 s as well as the threshold for a 100% increase in total airway resistance increased significantly with increasing plasma concentrations of both local anesthetics. Compared to placebo, acetylcholine threshold was almost quadrupled for lidocaine and tripled for bupivacaine with the highest plasma concentration of each local anesthetic.

Conclusions: In awake humans, intravenous lidocaine and bupivacaine both dose-dependently attenuated the hyperreactive response to a nonspecific inhalational challenge with acetylcholine. (key words: Anesthetics, local; bupivacaine; lidocaine. Lungs: airway resistance.)

FOR patients with bronchial hyperreactivity, intravenous application of local anesthetics is empirically recommended in standard textbooks and review articles to mitigate bronchoconstriction during tracheal intubation. In fact, in anesthetized dogs with bronchial hyperreactivity, intravenous lidocaine substantially suppress bronchoconstriction evoked by a nonspecific (citric acid) as well as by a specific (Ascaris antigen) challenge. Moreover, we showed recently, that intravenous bupivacaine attenuates bronchial hyperreactivity in predisposed patients. However, it is unknown in humans whether this effect of intravenously administered local anesthetics on bronchial hyperreactivity is dose-dependent.

Therefore, the purpose of the current double-blinded study was to answer these questions: (1) Do bupivacaine and lidocaine dose-dependently attenuate bronchial hyperreactivity in predisposed humans when administered intravenously? and (2) Is there a difference between bupivacaine and lidocaine? Accordingly, awake volunteers with known bronchial hyperreactivity were subjected to an inhalational challenge with acetylcholine before and during intravenous infusion of different doses of lidocaine or bupivacaine in a randomized placebo-controlled manner. If intravenous local anesthetics affect bronchial hyperreactivity in predisposed humans in a dose-dependent manner, the bronchoconstriction in response to an inhalational challenge with acetylcholine should be attenuated or
even abolished with increasing plasma concentrations of the local anesthetics.

Materials and Methods

Volunteers

After approval of the local ethical committee and informed written consent was obtained, nine male volunteers (age 31 ± 2 years; mean ± SD) were enrolled in the randomized, double-blinded, placebo-controlled study. All volunteers had a history of either severe hay fever, asthma at childhood, or exercise-induced asthma. None of them received an antibiotic medication within previous 10 days or corticosteroids within the 6 weeks preceding the investigation. None of them was a smoker.

Methods

The same air-conditioned room was used throughout the study to ensure that the humidity was constantly maintained and the room temperature (22°C) varied only by ±1°C. All measurements were performed during afternoons in the winter of 1993-94. The volunteers were sitting in a body plethysmograph during all measurements. A 16-G cannula was inserted on the right and left side into antecubital veins for infusion of the local anesthetics and withdrawal of blood samples for measurement of local anesthetic plasma concentrations, respectively.

Three to five days before the start of each volunteer’s study sequence, bronchial hyperreactivity was confirmed by an inhalational provocation with acetylcholine.\(^7\) Two volunteers did not respond with a 20% decrease in forced expiratory volume in 1 s (FEV\(_1\); 15 and 17%, respectively) to the screening challenge and, consequently, were not enrolled in the study. The results of the screening acetylcholine challenges of all volunteers are given in table 1.

Acetylcholine inhalation was performed with an air-compressing nebulizer, triggered by inspiration (Jaeger, Wurzburg, Germany). Each inhalation period lasted 2 min with a stepwise increase in the concentration of acetylcholine (0.5–1.0 and finally 3.0%) diluted in 0.9% saline solution, until a hyperreactive response was obtained. The response was defined as hyperreactive when FEV\(_1\) had decreased by at least 20%.

Forced expiratory volume in 1 s, vital capacity, and FEV\(_1\) in percent of vital capacity (FEV\(_1\) %) were obtained spirometrically. Total airway resistance (R\(_{aw}\)) was measured in a constant volume body plethysmograph (Jaeger, Wurzburg, Germany)\(^8\) with the panting technique carried out at a frequency of 1–0.5 Hz. Total airway resistance was determined as an average of five breaths, always before measurement of FEV\(_1\).

Forced expiratory volume in 1 s, vital capacity, and R\(_{aw}\) were evaluated before and after the inhalation of acetylcholine. The acetylcholine threshold concentrations necessary for a 20% decrease in FEV\(_1\);\(^7\) and a 100% increase in R\(_{aw}\);\(^9,10\) were calculated for each subject. The acetylcholine threshold during placebo infusion was defined as baseline.

Three to five days after the screening challenge with acetylcholine, the responding volunteers received an intravenous infusion of either three doses of lidocaine or bupivacaine, respectively, or 0.9% saline placebo in a randomized, double-blinded fashion on seven different days. To reach steady-state plasma concentrations of the local anesthetics, each infusion was started 30 min before the inhalational challenge and was continued until the end of the challenge. Owing to personal reasons, one volunteer agreed only to four of seven inhalational challenges. In this volunteer, only the effects of saline placebo and lidocaine were investigated.

Lidocaine was administered as a continuous intravenous infusion of either 1, 3, or 6 mg·min\(^{-1}\) with a loading bolus of 15, 45, or 90 mg, respectively. Bupivacaine was infused in doses of 0.25, 0.75, and 1.5

| Table 1. Screening FEV\(_1\), R\(_{aw}\), and Ach Thresholds of All Tested Volunteers |
|-----------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| FEV\(_1\) (L) | 3.69 | 4.44 | 3.98 | 5.54 | 5.86 | 5.99 | 4.31 | 3.78 | 4.23 | 4.68 | 4.17 |
| R\(_{aw}\) (mbar·L\(^{-1}\)·s) | 0.2 | 0.2 | 0.23 | 0.19 | 0.21 | 0.16 | 0.22 | 0.2 | 0.19 | 0.18 | 0.19 |
| Ach threshold (% Ach) | 0.69 | 2.54 | 1.03 | 0.47 | 2.1 | 2.71 | 2.01 | 1.79 | 0.59 | Failed | Failed |

FEV\(_1\) = forced expiratory volume in 1 s; R\(_{aw}\) = airway resistance as measured by body plethysmography; Ach threshold = concentration of inhaled acetylcholine necessary for a 20% decrease in FEV\(_1\).

Anesthesiology, V 84, No 3, Mar 1996
mg·min⁻¹ with a loading bolus of 3.75, 11.25, or 22.5
mg, respectively. The loading bolus was administered
in 5 min. These doses are considered equieffective in
view of their local anesthetic effect in isolated nerves¹¹
as well as in regional anesthesia¹² and the resulting
local anesthetic plasma concentrations are in the
range of those observed during major conduction
blocks.¹³⁻¹⁵

Arterial blood pressure (Riva-Rocci) and heart rate
(electrocardiogram) were evaluated before, after 5
min, and every 10 min after the start of each infusion,
respectively.

To determine plasma concentrations of lidocaine and
bupivacaine, venous blood samples were withdrawn
immediately before and at the end of each inhalational
challenge (table 2). The plasma local anesthetic con-
centration referring to the time of the inhalational
challenge was taken as the arithmetic mean of these
two concentrations. Lidocaine and bupivacaine plasma
concentrations were determined by capillary gas chro-
matography (Sichromat 3, nitrogen detector, Siemens,
Germany), as described previously,¹³ using mepiva-
caine as an internal standard.

Data Analysis

Data were presented as means ± SD. The acetylcho-
line threshold for a 20% decrease in FEV₁ during saline
placebo infusion was defined as baseline.

Two a priori null hypotheses were tested: (1) com-
pared to baseline, intravenously administered lidocaine
or bupivacaine does not change the acetylcholine
threshold for a hyperreactive airway response; and (2)
acetylcholine thresholds do not differ between the low,
medium, and high lidocaine and bupivacaine dosing
regimens, respectively. Comparisons within the lido-
caine or bupivacaine group were made by repeated-
measures analysis of variance followed by a post hoc
paired t test. Local anesthetic plasma concentrations
before and after the inhalational challenge were com-
pared by a paired t test. Comparisons between the li-
docaine or bupivacaine groups were performed by an
unpaired t test with Bonferroni correction for multiple
comparisons. Null hypotheses were rejected and sig-
nificant differences assumed with P < 0.05.

Results

Compared to saline (placebo), neither lidocaine nor
bupivacaine significantly altered baseline lung function
(table 3). However, both local anesthetics increased
acetylcholine threshold concentrations significantly
with increasing plasma concentrations (fig. 1 and table
4). Thus, bronchial hyperreactivity appeared to be at-
tenuated in a dose-dependent fashion.

Intravenous bolus injection followed by continuous
infusion of the local anesthetics increased local anes-
thetic plasma concentrations to different degrees (ta-
bles 2 and 4). However, no statistically significant dif-
cferences could be detected in the respective local an-
esthetic plasma concentrations before and after the
inhalational challenge (table 2). Thus, steady-state
conditions at the time of the inhalational challenge had
been reached. Therefore, it appeared justified to use
the arithmetic mean of both concentrations before and
after the inhalational challenge to reflect the concen-
trations at the time of the inhalational challenge (ta-
bles 4).

The effects of the increasing local anesthetic plasma
concentrations on the acetylcholine thresholds for each
volunteer are shown in figures 1A and 1B, the corre-
sponding mean values for each local anesthetic plasma
concentration as well as for saline placebo (baseline)
are shown in table 4. Compared to baseline, acetyl-
choline threshold concentrations for a 20% decrease in
FEV₁ increased dose-dependently during the infusion
of the local anesthetics for each volunteer (fig. 1A).

Table 2. Plasma Concentrations of Lidocaine and Bupivacaine Immediately before and after Inhalational Challenge for the
Low, Medium, and High Dose, Respectively

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
</tr>
<tr>
<td>Lidocaine (n = 9) (µg·mL⁻¹)</td>
<td>0.32 ± 0.15</td>
<td>0.26 ± 0.09</td>
<td>1.19 ± 0.30</td>
</tr>
<tr>
<td>P before vs. after</td>
<td>0.136</td>
<td></td>
<td>0.389</td>
</tr>
<tr>
<td>Bupivacaine (n = 8) (µg·mL⁻¹)</td>
<td>0.11 ± 0.04</td>
<td>0.10 ± 0.05</td>
<td>0.31 ± 0.05</td>
</tr>
<tr>
<td>P before vs. after</td>
<td>0.605</td>
<td></td>
<td>0.762</td>
</tr>
</tbody>
</table>

*P < 0.05.
i.e., every increase in the local anesthetic plasma concentration led to a significant increase in the acetylcholine threshold (table 4). The different baseline acetylcholine thresholds in the lidocaine and bupivacaine groups are explained by the different number of volunteers in each group (see materials and methods).

The acetylcholine threshold for a 100% increase in airway resistance also increased significantly with increasing local anesthetic plasma concentrations, regardless of whether lidocaine or bupivacaine was infused (table 4).

Thus, intravenous lidocaine as well as bupivacaine dose-dependently attenuated bronchial hyperreactivity in awake volunteers.

Acetylcholine thresholds between the lidocaine and bupivacaine groups at each plasma concentration did not differ between both groups (table 4).

Heart rate and arterial blood pressure were not affected by the loading bolus or the continuous infusion of local anesthetics.

During the largest dose of lidocaine infused, eight of nine volunteers mentioned mild central nervous symptoms such as light-headedness and slight vertigo.

Discussion

Our results demonstrate that both lidocaine and bupivacaine significantly and dose-dependently attenuate bronchial hyperreactivity in awake humans.

The results were obtained under the premises that the infused doses of lidocaine and bupivacaine led to clinically relevant plasma concentrations, that it was appropriate to subject volunteers with known bronchial hyperreactivity to a nonspecific inhalational challenge, and that the study design was without systematic bias.

First, lidocaine and bupivacaine are two of the most commonly used local anesthetics and second, lidocaine is approved by the Food and Drug Administration for intravenous use as an antidyssrhythmic drug. In our study, both local anesthetics were administered in doses leading to plasma concentrations in the range observed during regional anesthesia or antidyssrhythmic therapy with lidocaine.

Second, bronchial hyperreactivity is not only one feature of asthma. In fact, bronchial hyperreactivity is found in hay fever, strong smoking, after viral infections of the upper airways, left heart failure, and pulmonary diseases like chronic obstructive pulmonary disease, sarcoidosis, and allergic fibrosis. Patients suffering

Table 3. Effects of Placebo (saline), Lidocaine, or Bupivacaine Infusion on Lung Function

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Lidocaine (n = 9)</th>
<th>Bupivacaine (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0 mg·min⁻¹</td>
<td>3.0 mg·min⁻¹</td>
<td>6.0 mg·min⁻¹</td>
</tr>
<tr>
<td>FEV₁ (L)</td>
<td>4.56 ± 0.94</td>
<td>4.61 ± 1.03</td>
<td>4.63 ± 0.92</td>
</tr>
<tr>
<td>VC (L)</td>
<td>5.81 ± 0.89</td>
<td>5.85 ± 0.84</td>
<td>5.84 ± 0.58</td>
</tr>
<tr>
<td>FEV₁ (%)</td>
<td>79 ± 5.5</td>
<td>78 ± 8.0</td>
<td>79 ± 9.1</td>
</tr>
<tr>
<td>R₅₀ (mbar·L⁻¹·s)</td>
<td>0.20 ± 0.02</td>
<td>0.18 ± 0.03</td>
<td>0.19 ± 0.03</td>
</tr>
</tbody>
</table>

Data are mean ± SD. Measurements were made after a loading bolus followed by a 30-min infusion of each drug.

FEV₁ = forced expiratory volume in 1 s in liters and in % of the VC; VC = vital capacity; R₅₀ = airway resistance measured by body plethysmography.

Anesthesiology, V 84, No 3, Mar 1996

Fig. 1. Concentrations of inhaled acetylcholine necessary for a 20% decrease of forced expiratory volume in 1 s. Y-axis shows acetylcholine concentrations, X-axis lidocaine (A, left) or bupivacaine (B, right) concentrations, respectively. Each symbol represents the response of one volunteer subjected to an inhalational challenge during intravenous infusion of placebo (open symbols) or different doses of either lidocaine or bupivacaine (full symbols). The individual plasma concentrations with the corresponding acetylcholine thresholds are shown for each challenge. The local anesthetics were administered as described in methods. The inhalational challenges were performed on 7 different days. Each increase in the plasma concentration of the local anesthetic resulted in a corresponding increase in the acetylcholine threshold. Thus, both local anesthetics dose-dependently increased the acetylcholine threshold in volunteers with bronchial hyperreactivity.
from any of these diseases are at risk to develop bronchospasm after unspecific irritation of their airways.5,4

In general, the inhalation of acetylcholine causes bronchoconstriction via a complex mechanism involving cholinergic (vagal) efferents as well as smooth muscle cell stimulation.19 In detail, airway constriction by acetylcholine inhalation may be mediated via neural pathways, i.e., by stimulation of muscarinic receptors on parasympathetic nerve cells, by stimulating irritant receptors in the airway mucosa, and finally by binding to muscarinic receptors on smooth muscle cells.20,21 Because the inhalational challenge with acetylcholine is testing bronchial hyperreactivity in general, like histamine and methacholine, but not a specific antigen in a sensitized patient, the challenge is called nonspecific.22 Accordingly, to evaluate the effect of intravenous local anesthetics on bronchial hyperreactivity in general, volunteers with known bronchial hyperreactivity were subjected to a nonspecific inhalational challenge. The response to acetylcholine inhalation was evaluated by using a decrease in FEV1 as well as an increase in Rsw, because these two parameters reflect different regions of the bronchial tree. A change in Rsw is reflective of the response of the larger airways whereas FEV1 represents the whole bronchial tree, including the airway periphery.22 Because we found no difference between these two thresholds, attenuation of bronchial hyperreactivity by intravenous local anesthetics seems not to be restricted to a specific region of the bronchial tree.

Finally, the sequence of different intravenous doses of local anesthetics and saline placebo was randomized and double blinded to avoid any bias by investigators or volunteers.

Thus, our study design appears to be appropriate to evaluate the effect of different doses of lidocaine and bupivacaine on bronchial hyperreactivity.

The recommendation of intravenous local anesthetics to attenuate bronchoconstriction after irritating stimulation in humans is based solely on clinical experience1–4 and one study in anesthetized dogs.3 Our study is the first in awake human volunteers to show a dose-dependent increase in the acetylcholine threshold, i.e., the subjects were less susceptible to an inhalational challenge after intravenous application of lidocaine or bupivacaine.

Several mechanisms might explain this attenuating effect of intravenously administered local anesthetics on bronchial hyperreactivity.

First, intravenous local anesthetics might directly attenuate bronchial smooth muscle tone. In vitro topical application of lidocaine (10^-4 – 10^-3 mol/l) to strips of pig trachealis muscle significantly attenuated the response to an acetylcholine as well as a hyperkalemic challenge.23 However, the concentrations of local anesthetics used in these in vitro experiments exceeded local anesthetic plasma concentrations occurring during clinical use by far (10–100-fold). Thus, direct attenuation of bronchial smooth muscle tone seems not to be a likely explanation for the observed attenuation of bronchial hyperreactivity by intravenous lidocaine and bupivacaine in our awake volunteers.

Second, intravenous local anesthetics might attenuate nerve conduction and reflex arcs involved in media-
tion of bronchial hyperreactivity. In fact, it has been demonstrated in animals that different reflexes (Betzold-Jarisch-Relex, Cough-Relex, intestinal stretch receptor reflex) are attenuated or even completely blocked after intravenous application of the local anesthetics procaine, tetracaine, and lidocaine. 24,25 Moreover, evaluation of the effects of topicaly applied lidocaine or bupivacaine on smooth muscle in vitro (isolated strips of rat tail artery) has shown that local anesthetics in clinically relevant concentrations (lidocaine $61 \cdot 10^{-6}$ mol\cdotL$^{-1}$; bupivacaine $4 \cdot 10^{-6}$ mol\cdotL$^{-1}$) inhibited preferentially smooth muscle contraction elicited by adrenergic nerve stimulation rather than those generated by direct stimulation of the smooth muscle cells by potassium or administration of norepinephrine. 26

In addition, local nerve reflexes produced by stimulation of C-fiber nerve endings play a hypothetical role in the development of bronchial hyperreactivity, and therefore, the damage of bronchial epithelium as it occurs in asthma, hay fever, chronic obstructive pulmonary disease, and after viral infections of the airways might increase the reflex activity with concomitant increase in bronchial hyperreactivity. 27-29 Because intravenous or intramuscular application of local anesthetics attenuated or even suppressed directly recorded sympathetic nerve activity, at least in animals, 30,31 inhibition of neural conduction might explain the observed attenuation of bronchial hyperreactivity in our volunteers during intravenous application of local anesthetics. Thus, lidocaine and bupivacaine appear to inhibit smooth muscle contraction predominantly by attenuating nerve conduction rather than by direct suppression of smooth muscle cell contraction.

Finally, intravenous local anesthetics might have an influence on the central nervous system in attenuating bronchial hyperreactivity. This hypothesis is supported by experiments in anesthetized dogs. While intravenous administration of lidocaine (plasma concentrations 5.2 and 7.5 μg\cdotml$^{-1}$) significantly suppressed the directly recorded cardiac sympathetic activity, it did not decrease postganglionic nerve activity in response to preganglionic stimulation, i.e., ganglionic transmission is not inhibited by the local anesthetic. 32 Therefore, these authors speculate, that lidocaine acts in the central nervous system or spinal cord to inhibit sympathetic activity centrally. In sharp contrast, intravenous lidocaine in doses that prevented centrally induced sympathetic arrhythmias (hypothalamic stimulation), failed to attenuate increased preganglionic sympathetic activity in anesthetized cats. 33 These results suggest that lidocaine acts via a peripheral rather than a central mechanism. 33 Thus, the contribution of a central nervous system effect of the local anesthetics to the attenuation of bronchial hyperreactivity in our volunteers appears rather uncertain and speculative, if present at all.

In summary, this study demonstrates for the first time in a prospective placebo-controlled manner that intravenous administration of lidocaine and bupivacaine dose-dependently decreases bronchial hyperreactivity. Although devoid of side effects, we cannot recommend bupivacaine for clinical use because it is not approved by the Food and Drug Administration for intravenous use.

References

Anesthesiology. V 84, No 3, Mar 1996
INTRAVENTRICULAR LOCAL ANESTHETICS AND BRONCHIAL HYPERREACTIVITY

14. Moore DC, Mather LE, Bridenbaugh PO, Bridenbaugh LD, Bal-
four RL, Lyons DF, Horton WG: Arterial and venous plasma levels of
bupivacaine following epidural and intercostal nerve blocks. Anes-
thesiology 1976; 45:39-45
15. Braid DP, Scott DB: Dosage of lignocaine in epidural block in
lidocaine on ventricular arrhythmias in patients with coronary heart
18. Snashall PD, Chung KF: Airway obstruction and bronchial hy-
perresponsiveness in left ventricular failure and mitral stenosis. Am
Rev Respir Dis 1991; 143:945-56
19. Islam MS, Ulmer WT: Tracheal contractility and flow resistance
in anesthetized dogs with and without vagal block. Respiration 1979;
37:7-14
20. Ulmer WT, Islam MS: Acetylcholine sensitivity of the bronchial
tree. Respiration 1974; 31:137-45
22. Eiscr NM, Kerrebijn KF, Quinj PH: Guidelines for standardiza-
tion of bronchial challenges with (nonspecific) bronchocon-
23. Kato T, Nishimura J, Kobayashi S, Takahashi S, Yoshikawa J, Kan-
age H: Effects of lidocaine on intracellular Ca2+ and tension in airway
smooth muscle. Anesthesiology 1993; 78:954-65
24. Zipf HF: The pharmacology of viscero-afferent receptors with
special reference to endoanaesthesia. Acta Neuroweg 1966; 29:169-
96
25. Zipf HF, Reichertz P: Darstellung der totalen und reversiblen
Endoanaesthetic der Lungendehnungsrezeptorenen durch Wirkung/
Zeit-Kurven. Naunyn Schmiedebergs Arch Exp Pathol Pharmacol
1957; 231:96-110
26. Szocik JF, Gardner CA, Webb RC: Inhibitory effects of bupi-
vacaine and lidocaine on adrenergic neuroeffector junctions in rat
tail artery. Anesthesiology 1993; 78:911-7
27. Nadel JA, Borson DB: Modulation of neurogenic inflammation
29. Magi CA, Meli A: The sensory-efferent function of capsaicin-
30. Hogan QH, Stadnicka A, Stekel TA, Bosnjak ZJ, Kampne JP:
Effects of epidural and systemic lidocaine on sympathetic activity
and mesenteric circulation in rabbits. Anesthesiology 1993; 79:
1250-60
31. Nishikawa K, Terai T, Morimoto O, Yukioka H, Fujimori M:
Effects of intravenous lidocaine on cardiac sympathetic activity and
A-V conduction in halothane-anesthetized cats. Acta Anaesthesiol
Scand 1994; 38:115-20
32. Miller BD, Thames MD, Mark AL: Inhibition of cardiac sym-
pathetic nerve activity during intravenous administration of lidocaine.
33. Evans DE, Gillis RA: Effects of DPH and lidocaine on cardiac
arrhythmias induced by hypot/halamic stimulation. J Pharmacol Exp
Ther 1974; 191:506-17

Anesthesiology, Vol. 84, No 3, Mar 1996