Forget the Costs: Use What Is Best

To the Editor.—Anesthesiology is reaching a new low when we worry about and calculate cost per minute of anesthesia time, particularly because the difference is pennies per minute. The cost analysis by Macario et al.1 compares the cost of different methods of airway management—mask, laryngeal mask, and endotracheal tube—and drug costs with each. The assumption is such that, with a mask, gas flows of 6 l/min must be used. The authors seem unaware of the fact that it is possible (and was standard practice) to use even a closed system with a mask. Flow rates of 300–400 ml/min were customary. I am sure that low flows would have a major impact on the calculations and would make the mask method best by far. It should come as no surprise to anyone that reused items are less costly than disposables.

What troubles me is that what is best for the patient is not even considered. Is inconvenience for the anesthesiologist more important? I have yet to see surgeons calculating the cost per stitch for suture materials, swaged-on needles, disposable versus reusable sponges, drapes, and other items. Expensive high-technology surgery is acceptable and sought. It is demeaning for the anesthesiologist and a disservice to patients that we should consider pennies per minute to be important.

When I have my operation, I want what is best for me, not what is cheapest and most convenient for the anesthesiologist. Primum non nocere.

Jay Jacoby, M.D., Ph.D.
Professor
Department of Anesthesiology
The Ohio State University Medical Center
410 West 10th Avenue
Columbus, Ohio 43210-1228

Reference

(Accepted for publication January 24, 1996.)
CORRESPONDENCE

Alex Macario, M.D.
Pearl Chang, M.B.A.
Dan Stempel, M.B.A.
John Brock-Utne, M.D., Ph.D.
Department of Anesthesiology
Stanford University Medical Center
Stanford, California 94305-5115

face mask becomes an even more economically attractive airway choice for elective outpatient surgery.

References


(Accepted for publication January 24, 1996.)

Preoperative Pregnancy Testing in Ambulatory Surgery: I

To the Editor.—Manley et al. 1 found the true incidence of previously unrecognized pregnancy in menstruating women presenting for elective ambulatory surgery to be 7 of 2,056 (0.3%), as determined by urinary or serum human chorionic gonadotropin immunoassay. Although this information is valuable, alone it is insufficient for the clinician to evaluate the significance of a positive or negative pregnancy test result in a single patient.

The probability of pregnancy in a patient with a positive test result (positive predictive value) equals the number of true positives divided by the total number of positives (true positives + false positives); the probability of nonpregnancy in a patient with a negative test result (negative predictive value) equals the number of true negatives divided by the total number of negatives (true negatives + false negatives). The clinical significance of the pregnancy test is therefore given by the positive predictive and the negative predictive values. These values can be calculated from intrinsic properties of the test (sensitivity and specificity) and the estimated prevalence of pregnancy in the population in question. 2,3

Manley et al. 1 quote one false-positive pregnancy test among 179 adolescent women (0.6%) during preoperative testing from data by Malviya et al. 4 The specificity of the pregnancy test is therefore 178 of 179, 99.4%. Manley et al. 1 also state that the possibility of a false-negative result (pregnancy despite a negative test result) “is extremely remote.” Let us assume, therefore, that the sensitivity of the test is 100% (a sensitivity of 99% would give virtually the same result in the following discussion).

Consider a sample of 100,000 menstruating women presenting for elective ambulatory surgery. Given the original findings by Manley et al. 1 of a 0.3% pregnancy rate, there would be 300 pregnant and 99,700 nonpregnant women in the sample. Pregnancy testing of the 300 pregnant women would result in 300 true positives and no false negatives (100% sensitivity); pregnancy testing of the 99,700 nonpregnant women would result in 99,102 true negatives and 598 false positives (99.4% specificity). The positive predictive value is 300/300 + 598 = 33%, and the negative predictive value is 99,102/99,102 + 0 = 100%.

Given that the aforementioned assumptions are valid, the clinician can be virtually 100% confident that a negative preoperative pregnancy test means that the patient is not pregnant. On the other hand, only 33% of women who test positive will be pregnant; the remaining 67% will have their surgery delayed but will not be pregnant. The latter statement is based on the specificity derived from data by Malviya et al. 4 Even if this assumption is not valid, when a population has a low overall prevalence of pregnancy (0.3% in this example), it is essential for the pregnancy test to be highly specific (few false positives) if a low positive predictive value is to be avoided. Improving the specificity to 99.95% (a false positive rate of 1 in 2,000) would only result in an 86% positive predictive value given the same prevalence of pregnancy (0.3%).

Although Manley et al. 1 and Malviya et al. 4 found what appear to be minor differences in specificity for preoperative pregnancy testing, the low prevalence of pregnancy in the population to be tested will

Anesthesiology, V 84, No 5, May 1996