A Solution to Monitoring the Electrocardiograph in Patients with Extensive Burn Injury

To the Editor:—In patients with extensive burns, it is sometimes a challenge to monitor the ECG, because the lack of natural skin and application of protective ointments prevent the adherence of the ECG discs. We have used the following modification to monitor ECG successfully in these patients.

The ends of a standard 3-lead ECG wires are cut and small alligator clips are attached to them (fig. 1). After the patient is well sedated or asleep, using a sterile stapler (Davis + Heck), three stainless steel staples (35 wide; 6.9 mm × 3.8 mm) (fig. 2) are clipped to the skin near the right and left shoulders and left chest.

Because these staples are painful to place on an awake patient, one has to make sure that the patient is asleep or heavily sedated before the staples are placed. Some of these patients may already have staples in place to hold the homograft skin patches in place. The alligator clips are then attached to these staples. This provides
a secure and steady ECG tracing. We hope this information will be useful to some of the readers.

Ram S. Ravindran, M.D.

Department of Anesthesia
Wishard Memorial Hospital
Indianapolis, Indiana 46254

Response to: Possible Contribution of Transmembrane Ca$^{2+}$ Influx to Adenylate Cyclase-mediated NO-cGMP Relaxation in Rat Aorta

To the Editor—I enjoyed reading the interesting article by Iramami et al. entitled “A Beta-adrenoceptor Agonist Evokes a Nitric Oxide-cGMP relaxation Mechanism Modulated by Adenyl Cyclase in Rat Aorta.” In their studies, they demonstrated that (1) isoproterenol can induce NO production in endothelial cells and (2) halothane did not inhibit isoproterenol-induced relaxation, but it inhibited acetylcholine-induced relaxation. The authors proposed that halothane inhibits NO-cGMP relaxation only when constitutive nitric oxide synthase (cNOS) is activated by Ca$^{2+}$ released from internal stores.

However, there are several issues that need to be mentioned. First, in our experimental studies, neither isoproterenol nor forskolin, an adenyl cyclase activator, was shown to directly activate nonselective cation current in cultured endothelial cells (unpublished observation). Thus, the increase in Ca$^{2+}$ influx caused by the increase of adenyl cyclase activity is thus difficult to explain. Second, the statement that halothane inhibits the NO-cGMP relaxation only when cNOS is activated by Ca$^{2+}$ released from internal stores is not entirely explained by the previous results showing that halothane can attenuate A23187-mediated endothelium-dependent relaxation and increase in cGMP. A23187, a Ca$^{2+}$ ionophore, can increase Ca$^{2+}$ influx from the exterior of the cell and also activate NO-cGMP production.

Third, the direct inhibition of halothane on voltage-gated Ca$^{2+}$ current in vascular smooth muscle cells may partly account for the failure of halothane to inhibit the isoproterenol-induced relaxation. I am thus inclined to believe that the effect of halothane on the agonist-induced NO-cGMP mechanism in rat aorta still remains unclear.

Sheng-Nan Wu, M.D., Ph.D.
Associate Professor
Department of Medical Education and Research
Veterans General Hospital-Kaohsung

386, Ta-Chung 1st Road
Kaohsung City, Taiwan, ROC

References

(Accepted for publication March 18, 1997.)