AMP A/Kainate Antagonist LY293558 Reduces
Capsaicin-evoked Hyperalgesia but Not Pain in
Normal Skin in Humans

Christine N. Sang, M.D., M.P.H.,* Meredith P. Hostetter, B.A.,† Richard H. Gracely, Ph.D.,†
Amy S. Chappell, M.D.,§ Darryle D. Schoepp, Ph.D.,¶ Gloria Lee, R.N.,‖ Scott Whitcup, M.D.,**
Rafael Caruso, M.D.,†† Mitchell B. Max, M.D.†††

Background: Animal studies suggest that α-amino-3-hydroxy-5-
methyl-3-isoxazole propionic acid–kainate (AMPA-KA) receptors are
involved in pain processing. The effects of the competitive
AMPA-KA antagonist LY293558 in two types of experimental pain
in human volunteers, brief pain sensations in normal skin, and
mechanical allodynia–pinprick hyperalgesia were studied after
the injection of intradermal capsaicin.

This article is accompanied by an Editorial View. Please see:
Brennan TJ: AMPA/Kainate receptor antagonists as novel anal-

* Associate Medical Director, NIDR/NIH Pain Research Clinic. Pain and Neurosensory Mechanisms Branch, National Institute of Dental Research, National Institutes of Health.
† Research Assistant, Pain and Neurosensory Mechanisms Branch, National Institute of Dental Research, National Institutes of Health.
§ Psychologist, Pain and Neurosensory Mechanisms Branch, National Institute of Dental Research, National Institutes of Health.
¶ Director, Clinical Neurosciences, Lilly Research Laboratories.
‖ Senior Scientist, Neuroscience Division, Lilly Research Laboratories.
‖‖ Staff Nurse, Nursing Department, Clinical Center, National Institutes of Health.
** Clinical Director, National Eye Institute, National Institutes of Health.
†† Staff Ophthalmologist, National Eye Institute, National Institutes of Health.
††† Chief, Clinical Trials Unit, Pain and Neurosensory Mechanisms Branch, National Institute of Dental Research, National Institutes of Health.

Received from the National Institutes of Health, Bethesda, Maryland, and Lilly Research Laboratories, Indianapolis, Indiana. Submitted for publication January 14, 1998. Accepted for publication June 24, 1998. Presented in part at the annual meeting of the Society for Neuroscience, New Orleans, Louisiana, October 27, 1997.

Address reprint requests to Dr. Sang: Massachusetts General Hospital, Department of Anesthesia, 55 Fruit Street, Clinics 3, Boston, Massachusetts 02114. Address electronic mail to: sang@etherdome.mgh.harvard.edu

Methods: Brief intravenous infusions of the competitive AMPA-KA antagonist LY293558 were given to 25 healthy volunteers to examine acute toxicity and analgesic effects. Fifteen volunteers then entered a double-blinded, three-period crossover study. In a Phase II study, LY293558 infusions (100% maximally tolerated dose to 33% maximally tolerated dose to placebo) began 10 min after intradermal injection of 250 μg capsaicin S volar forearm. Spontaneous pain, areas of mechanical allodynia and pinprick hyperalgesia, and side effects were determined every 5 min for 60 min.

Results: The median maximally tolerated dose was 1.3 ± 0.4 (range, 0.9–2.0) mg/kg. Tests of cognitive and neurological function were unchanged. Dose-limiting side effects were hazy vision in 95% of volunteers and sedation in 40%. There were no significant changes in electrical or warm–cool detection and pain thresholds or heat pain thresholds. LY293558 had little effect on brief pain sensations in normal skin. Both high and low doses of LY293558 significantly reduced pain intensity, pain unpleasanness, and the area in which light brush evoked pain after intradermal capsaicin. There was a trend toward a dose–response effect of LY293558 on the area in which pinprick evoked pain after intradermal capsaicin, which did not reach statistical significance.

Conclusions: The authors infer that AMPA-KA receptor blockade reduces the spinal neuron sensitization that mediates capsaicin-evoked pain and allodynia. The low incidence of side effects at effective doses of LY293558 suggests that this class of drugs may prove to be useful in clinical pain states. (Key words: Allodynia; glutamate; nociception; sensory testing.)
AMP/KA antagonists reduce human hyperalgesia

1. Do AMPA-KA receptor antagonists have analgesic effects in humans, and if so, which types of pain are most affected? Using a battery of well-studied experimental pain stimuli, we addressed two different types of pain processing. First, acute pain processing in the baseline state of the nervous system was assessed by applying brief thermal and electrical stimuli to normal skin. Second, the contribution of sensitization of spinal pain-processing neurons was assessed using the intradermal capsaicin model of hyperalgesia. Animal and human experiments have shown that injection of capsaicin causes an intense barrage of impulses from C nociceptors, which sensitizes spinal neurons, temporarily producing areas of hypersensitivity to mechanical stimuli, termed allodynia (pain induced by a stimulus that is not normally painful, such as light brushing) or hyperalgesia (increased pain reported after a stimulus that is normally painful). There is evidence for sensitization of central neurons in pain caused by burn, trauma, nerve injury, visceral disease, arthritis, and many other clinical conditions.

2. Can analgesic effects be detected at doses that do not interfere with alertness, cognition, mood, motor function, or sensory modalities mediated in part by glutamate receptors?

Materials and Methods

We studied medication-free healthy male volunteers (aged 21-47 yr). Studies were performed with informed consent and approval by the NIH/NIDR Institutional Review Board. The volunteers were unaware of the study’s hypothesis and were required to turn away their gaze during stimulation.

LY295558 ((3S,4aR,6R,8aR)-6-[2-((1H-tetrazole-5-yl)ethyl]dcahydroisoquinolone-3-carboxylic acid monohydrate, Lilly Research Laboratories, Indianapolis, IN) was reconstituted with 0.9% normal saline to a concentration of 10 mg/ml. Each single-dose infusion was administered over 15 min after dilution to 15 ml 0.9% normal saline.

Phase I Study

A preliminary dose-finding study (n = 6) was performed to determine the maximally tolerated dose (MTD) in six volunteers. The MTD was defined as that dose that produces a symptom or sign most likely a result of central nervous system dysfunction or any symptom that was persistent and troubling to the participant. The initial dose for participant 1 was 0.01 mg/kg, and each subsequent dose was at most twice the highest previously administered dose. During each session, we evaluated neurologic function, cognitive function, and side effects at baseline and every 15 min for 60 min. A simple neurologic examination involved checking for nystagmus (tested by observing the volunteer’s eyes during lateral gaze) and ataxia (tested by observing the volunteer when he moved his pointed finger to the examiner’s finger and back to his own nose). Cognitive function was assessed using the Digit Symbol Substitution Test. Subjective side effects were determined us-

Anesthesiology, V 89, No 5, Nov 1998
ing a 100-mm visual analog scale to assess the presence of visual changes and sedation.

After the initial dose-finding study in six volunteers, we administered escalating doses of LY293558 to 16 additional participants to determine the MTD for each of them, the dose to be used in the placebo-controlled trial. Each dose was no greater than 33% higher than the previous dose. Procedures during each session were identical to those of the preliminary dose-finding study. Twenty volunteers achieved their MTD.

In the volunteer who received the highest dose in the preliminary dose-finding study, visual evoked potentials were elicited by contrast reversal of a checkerboard pattern (check sizes 15, 30, and 60 mm). Electroretinography (Ganzfeld Flash ERG) were used to demonstrate rod- and cone-mediated responses after dark-adaptation.

Effect of LY293558 on Brief Noxious Stimuli

We determined the effect of LY293558 on painful and nonpainful sensations in normal skin by evaluating brief stimuli every 15 min for 90 min during 87 dose sessions in 25 volunteers.

Electrical Detection and Pain Thresholds. Monopolar constant-current rectangular pulses were delivered at 0.5 Hz through bipolar 7-mm diameter electrodes spaced 23 mm apart (center to center) on the volar forearm, applied along the axis of the limb with the cathode directed proximally. The volunteers were seated with their arms resting outward and supinated, and electrodes were applied at the level of the heart. To avoid stimulation of nociceptors at suprathreshold intensities, an ascending series of stimulus intensities was delivered in 0.01-mA steps to each site, starting at zero and gradually increasing in increments of 0.01 to 0.05 mA until a sensation was evoked (detection threshold) and further increased until the sensation changed to a definite pain (pain threshold).

Warm–Cool Detection and Heat–Cold Pain Thresholds. Pain and detection thresholds to warm and cool stimuli were determined with a 4 × 4 cm² Peltier probe, whose temperature changed at a rate of 1°C/s from a baseline of 33°C.

Pain Intensity and Unpleasantness of 2-s Stimuli at 1°C, 2°C, and 3°C above the Predrug Heat Pain Threshold. The volunteers rated pain intensity and unpleasantness of 5-s heat stimuli at fixed temperatures of 1°C, 2°C, and 3°C above the pain threshold determined at baseline. Pain intensity and unpleasantness were recorded by choosing from a list of 15 words, which are assigned values based on ratio scales. Sensitivity of the scale in distinguishing between active and control treatment groups has been demonstrated for experimental and clinical pain states. Phase II Study: Effect of LY293558 on Capsaicin-evoked Pain

To determine the effect of two doses of LY293558 (33% vs. 100% MTD vs. placebo) on pain and mechanical hyperalgesia after intradermal capsaicin, 15 volunteers completed a three-period double-blinded crossover study. In each session, we injected 250 μg intradermal capsaicin in the volar forearm. Capsaicin (8-methyl N-vanillyl-α-nonenamide) was obtained from Fluka (Ronkonkoma, NY) and dissolved in 15% Tween 80 at a concentration of 10 mg/ml. The 15-min LY293558 infusion began 10 min after the capsaicin injection. Spontaneous pain, areas of mechanical allodynia and pinprick hyperalgesia, and side effects were determined every 5 min for 60 min. Brush allodynia was mapped by stroking the skin with a #2 flat Princeton watercolor brush at standard pressure (bending the distal 2 mm of the brush) and at a rate of 1 cm/s. Pinprick hyperalgesia was mapped using a standard safety pin that was pressed against the skin until dimpling was visible. The skin temperature was fixed at 36°C by a radiant heat lamp. After the experiment, the points defining areas of allodynia and pinprick hyperalgesia were connected. The resulting polygons were scanned (Adobe Photoshop 4.0, Adobe Systems, Inc., San Jose, CA) and areas calculated (NIH Image 1.1, developed at the National Institutes of Health, Bethesda, MD).

To determine whether the volunteers could guess what treatment they received, we administered blinding questionnaires after each session was complete.

Statistical Analysis

Our main outcome variables were spontaneous pain intensity, allostynia, and hyperalgesia over 60 min. We used the outcome of spontaneous pain intensity from 10 to 60 min after capsaicin to determine the sample size for this trial. Assuming a type I error of 0.05, a type II error of 0.2, and a within-subject standard deviation of 1.7 (RH Gracely et al., unpublished data), we would detect a difference of 1.2 units on the Gracely scale with >80% power, provided that our sample size is at least 15. A reduction of 1.2 units on the Gracely scale (its maximum value of 1.77 corresponds to “very intense”) corresponds to a reduction in pain from “very intense” to “weak.” Each time point was normalized to the baseline value.
AMP/KAINATE ANTAGONIST REDUCES HUMAN HYPERALGESIA

Table 1. Dose-limiting Toxicity of LY293558 (n = 20)

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>New SE</th>
<th>Cumulative SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1.0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>1.6</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>1.8</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>2.0</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Side Effects at Each Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision Change</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Values are the number of subjects experiencing side effects at each dose level. The severity of drug effects was rated as mild at each dose level. In all cases, a quantitative paper and pencil test (Digit Symbol Substitution Test) was unchanged from baseline.

For pain intensity or unpleasantness, the baseline was defined as the highest value in the 30 s after the capsaicin injection; for areas of allodynia or hyperalgesia, the baseline was defined as the observation at 5 min after capsaicin injection. The paired Student’s t test was used to examine the mean of the paired differences of each treatment to placebo from 10 to 60 min after capsaicin.

Results

Toxicity

The first volunteer to experience side effects (subject A) remained alert with normal results of the neurologic examination and cognitive function, but he noted blurred vision about 15 min after the start of the study drug infusion (dose = 1.8 mg/kg), which he described as white clouds in the periphery, sparing central vision. At 35 min, the cloudiness spread centrally to involve all fields. Symptoms resolved in 60 min. Then we reevaluated all previous drug infusions and, in retrospect, noted that the three other volunteers who received the three other highest doses (all >1 mg/kg) also reported transient and mild white visual obscurations. These four volunteers were evaluated using electrophysiologic tests 2 days to 2 weeks after symptoms resolved. Visual evoked responses showed good reproducibility. All visual evoked potentials showed a main positive peak (P100) recorded at the mid-occipital electrode with normal latency, with amplitudes in the low normal range. Electroretinography (Ganzfeld Flash ERG) demonstrated that rod- and cone-mediated responses recorded after dark adaptation were normal in amplitude and implicit time. There were no interocular differences for either test.

Normal serial electroretinogram, visual evoked response, and visual fields in the presence of subjective visual changes suggested that there were no permanent adverse effects of LY293558 on retinal or cortical function or on conduction along the central visual pathways. Subject A underwent electrophysiological recordings and visual field testing during two repeated infusions at MTD, again, all results were normal.

Seventy-eight infusions were administered to 20 volunteers (including four from the preliminary study) at nine dose levels (Table 1). The median MTD was 1.3 ± 0.4 (range, 0.9–2.0) mg/kg. In every volunteer, tests of cognitive and neurologic function remained unchanged from baseline, even at MTD. Subjective side effects were mild and again included visual symptoms described as “looking through a haze,” “like being in the shower looking through steam,” “white clouds,” “white smoke,” “like fog filling the room” (described by 19 of 20 [95%] volunteers; onset, 17 ± 5 min; duration, 36 ± 19 min), sedation (8 of 20 [40%]; onset, 29 ± 30 min; duration, 46 ± 67 min), and bifrontal headache (2 of 20 [10%]; onset, 110 ± 99 min; duration, 20 ± 14 min).

Effect of LY293558 on Brief Noxious Stimuli

There were no significant changes in electrical or warm–cool detection and pain thresholds (data not shown). Suprathreshold heat pain intensity was not significantly reduced for 60 min after LY293558 infusions as compared with baseline, although a nonsignificant trend toward reduction of pain intensity after the higher-dose infusions was noted (repeated measures analysis of variance; dose × time interaction; P = 0.11; fig. 1).

Anesthesiology, V 89, No 5, Nov 1998
Effect of LY293558 on Capsaicin-evoked Pain
For both the 33%MTD and 100%MTD groups, spontaneous pain intensity (fig. 2A: $P = 0.004$ and 0.007 for 33%MTD and 100%MTD, respectively) and unpleasantness (fig. 2B: $P = 0.003$ and 0.037), and areas of allodynia (fig. 3A: $P = 0.017$ and 0.002) were significantly less in volun-

Fig. 1. Intensity of suprathreshold painful heat stimuli delivered to normal skin. One-second thermal stimuli at a temperature 3°C above the predrug pain threshold were administered to the volar forearm before and during 87 infusions in 25 volunteers. Spontaneous pain intensity is plotted as a percentage of baseline. A trend toward reduction of pain intensity after the higher-dose infusions was not statistically significant.

Fig. 2. Capsaicin-evoked spontaneous pain intensity and unpleasantness. Spontaneous pain intensity (A) and unpleasantness (B) are plotted as percentages of baseline, defined as the peak score immediately after injection of intradermal capsaicin. The mean pain intensity from 10 to 60 min after the capsaicin dose was significantly less for both 33%MTD and 100%MTD compared with saline infusion.
Fig. 3. Capsaicin-evoked allodynia and hyperalgesia. Areas of (A) allodynia and (B) hyperalgesia are plotted as percentages of baseline, defined as the area determined 5 min after injection of intradermal capsaicin. Mean areas of allodynia from 10 to 60 min after capsaicin were significantly less for both 33%MTD and 100%MTD. A trend toward a reduction of the area of pinprick hyperalgesia was not statistically significant. Mapping of allodynia and pinprick hyperalgesia at each time point began at the time indicated and took 1 or 2 min. Therefore, the 10-min point, which already shows the effects of the drug infusion begun at 10 min, indicates that the drug already has some effect within 2 min of starting LY293558.

...teers who received LY293558 rather than placebo. Areas of pinprick hyperalgesia were less in the 33%MTD and 100%MTD groups than placebo, although these effects were not significant (fig. 5B: P = 0.38 and 0.05).

Nine of 15 volunteers (60%) were able to correctly guess during which of the three treatment periods they received 100%MTD; 5 of 15 (33%) were able to correctly guess during which treatment period they received 33%MTD, a finding no better than chance, indicating that the analgesic and antiallodynic effects noted with the 33%MTD were not influenced by volunteers’ ability to identify which treatment they had received.

Discussion

To our knowledge, this is the first report of the effects of AMPA-KA antagonists in humans. Our data show that AMPA-KA receptors play a role in pain transmission in humans: LY293558 significantly decreased both spontaneous pain and the spread of mechanical hyperalgesia evoked by intradermal capsaicin but did not significantly reduce brief suprathreshold pain sensations in normal skin. Based on the differential analgesic response between two human experimental models of pain, we infer that AMPA-KA receptors primarily contribute to the processes leading to sensitization of central neurons.10,25-27,37

An understanding of the AMPA-KA receptor subtypes mediating the relatively selective analgesic action of LY293558 in this study might facilitate the development of analgesic drugs with fewer side effects. LY293588 is a relatively potent antagonist at AMPA-type glutamate receptors (GluR1–i) and KA receptors.38 With regard to

Anesthesiology, V 89, No 5, Nov 1998
KA receptor subtypes, the available data show that LY293558 is a potent antagonist of KA-induced currents and binding in human GluR5-expressing cells, and weakly antagonizes human GluR7 and KA2 receptors, and has no measurable activity at human GluR6 receptors. The AMPA-blocking action may not be important in antihyperalgesic effects because several potent antagonists of GluR1-4 do not affect the formalin paw response in the rat until doses are reached that produce ataxia. Simmons et al. recently showed that LY382884, an analog of LY293558 that potently blocks GluR5 kainate receptors but does not bind to GluR1-4 receptors, reduces the second-phase formalin response in the rat as effectively as LY293558 does, but it produces no ataxia at doses 10 times the antihyperalgesic dose.

Based on these data, we propose that LY293558’s action at GluR5 kainate receptors mediates the antihyperalgesic effects that we observed in human volunteers. The cellular site and nature of this action has not been determined, but there is a high probability of specific antagonists of AMPA and kainate receptor subtypes now makes it possible to elucidate the syndromic role of antihyperalgesic 14.15 At least some spinal dorsal horn GluR5 receptors are likely to be located presynaptically on primary afferent sensory neurons, as GluR5-containing KA receptors have been shown to be synthesized in dorsal root ganglion neurons, appear responsible for kainate-induced currents in that tissue, and are blocked by LY293558.

The predominant side effect, visual obscuration, was mild and transient at these doses and presumably resulted from blockade of the AMPA-KA receptors that have been demonstrated in the retina, visual cortex, lateral geniculate nucleus, superficial superior colliculus, and nucleus of the optic tract. We are unaware of animal data to specify which AMPA-KA receptor subtypes mediate this effect. However, because the results of all the psychophysical and electrophysiologic tests were normal, we could not localize the effect of LY293558 within the visual system. In rats receiving 4-day infusions of daily 10 mg/kg intravenous boluses of LY293558, we noted no histopathologic changes in the optic tract, superior colliculus, or multiple areas of cortex, including the visual cortex (W. Jordan, unpublished data). Despite normal electrophysiologic recordings in subject A during peak LY293558 blood concentrations, the occurrence of visual effects in 19 of 20 volunteers suggests that close attention should be paid to the visual system during the preclinical and clinical development of AMPA-KA antagonists.

The observation that LY293558 reduces pain and allodynia in the capsaicin model has implications for therapy. Mechanical allodynia and hyperalgesia are often seen in patients with acute pain after surgery and chronic pain after nerve or soft tissue injuries, and quantitative sensory testing in many such patients suggests central neural sensitization. N-methyl-D-aspartate receptor blockade has reduced pain in some of these patients but has been accompanied by side effects that usually prevent complete relief. We have shown that another class of glutamate antagonists shows analgesic efficacy at doses that do not cause troublesome side effects, suggesting promise for this class of drugs in humans.

The authors thank Drs. Smriti Iyengar for discussions of her animal data, M.A. Ruda and R. Caudle for their reviews of the manuscript, and Susan Booher, R.N., and Michael Burke for their technical assistance.

References

11. Eide PK, Jorum E, Stubhaug A, Bremnes J, Breivik H. Relief of post-herpetic neuralgia with the N-methyl-D-aspartate receptor an-
AMPA/KAINATE ANTAGONIST REDUCES HUMAN HYPERALGESIA

tagant ketamine: A double-blind, cross-over comparison with mor-
punctate hyperalgesia around a surgical incision demonstrates that
ketamine is a powerful suppressor of central sensitization to pain
following surgery [In Process Citation]. Acta Anaesthesiol Scand 1997;
41:1124-32.
13. Tal M, Bennett GJ. Dextorophan relieves neuropathic heat-evoked
14. Kristensen JD, Svensson B, Gerdh T Jr. The NMDA receptor
antagonist CPP abolishes neurogenic 'wind-up' pain after intrathecal
15. Codder T, Melzack R. The contribution of excitatory amino acids to
central sensitization and persistent noiception after formalin-
16. Lutfy K, Cai SX, Woodward RM, Weber E. Antinoceptive ef-
efts of NMDA and non-NMDA receptor antagonists in the tail flick test
17. Young MR, Fleetwood-Walker SM, Mitchell R, Dickinson T. The
involvement of metabotropic glutamate receptors and their intracellu-
lar signalling pathways in sustained noiceptive transmission in rat
18. Furuyama T, Kiyama H, Sato K, Park HT, Maeno H, Takagi H,
Tohyama M: Region-specific expression of subunits of ionotropic glu-
tamate receptors (AMPA-type, K-type and NMDA receptors) in the rat
spinal cord with special reference to noiceception. Brain Res Mol Brain
neurones to NMDA, AMPA and kainate produces only short-term en-
hancements of responses to noxious and non-noxious stimuli. Neuro-
20. Hunter JC, Singh L. Role of excitatory amino acid receptors in the
mediation of the noiceptive response to formalin in the rat. Neurosci Lett
21. Simmons RMA, Li DL, Hoo KH, Devenill M, Ornstein PL, Iyengar
S. Kainate GluR5 subtype mediates the noiceptive response to formalin
22. Schoepf DD, Salhoff CR, Fuson KS, Sacana AI, Tizzano JP,
Ornstein PL, May PC: Selective protection against AMPA- and kainate-
evoked neurotoxicity by (3S, 4aR,6R,8aR)-6-[2-(1H)-tetrazole-5-y]eth-
yl]decahydrosisooquinoline-3-carboxylic acid (LY293558) and its race-
23. Schoepf DD, Lodge D, Bleakman D, Leander JD, Tizzano JP,
Wright RA, Palmer AJ, Salhoff CR, Ornstein PL. In vitro and in vivo
antagonism of AMPA receptor activation by (3S, 4aR,6R)-6-[2-(1H)-tetrazole-5-y]ethyl] decahydrosisooquinoline-3-carboxylic acid.
Neuropharmacology 1995; 34:1159-68.
24. Desai MA, Burnett JP, Ornstein PL, Schoepf DD. Cytochrome
acts as a site on the alpha-amino-5-hydroxy-5-methyl-4-isoxazole propi-
onic acid receptor complex that does not recognize competitive or
noncompetitive AMPA receptor antagonists. J Pharmacol Exp Ther
25. Simone DA, Sorkin LS, Oh U, Chung JM, Owens C, LaMotte RH,
Willis WD. Neurogenic hyperalgesia: Central neural correlates in re-
sponses of spinohalamic tract neurons. J Neurophysiol 1991; 66:
228-46.
26. Sang CN, Gracely RH, Max MB, Bennett GJ. Capsaicin-evoked
mechanical allodynia and hyperalgesia cross nerve territories. Evidence
for a central mechanism. ANESTHESIOLOGY 1996; 85:491-6
27. Torbjörk HE, Lundberg LE, LaMotte RH: Central changes in
processing of mechanoreceptive input in capsacin-induced secondary
hyperalgesia in humans J Physiol (Lond) 1992; 448:765-80.
28. Meyer RA, Campbell JN: Myelinated nociceptive afferents
account for the hyperalgesia that follows a burn to the hand. Science
central processing maintained dynamically by peripheral input [Pub-
lished erratum appears in Pain 1993; 52:251-3] [see comments]. Pain
1992; 51:175-94
30. Koltzenburg M, Torbjörk HE, Wahren LK: Nociceptor modu-
lated central sensitization causes mechanical hyperalgesia in acute
31. Laid JMA, de la Rubia PG, Cervero F: Excitability changes of
somatic and viscero-somatic nociceptive reflexes in the decebrebrate-
spinal rabbit: Role of NMDA receptors. J Physiol (Lond) 1995; 489:
545-55
32. Morris VH, Cruwys SC, Kidd BL: Characterisation of capsacin-
induced mechanical hyperalgesia as a marker for altered nociceptive
processing in patients with rheumatoid arthritis. Pain 1997; 71:179-86
33. Stone BM: Pencil and paper tests—Sensitivity to psychotropic
34. Gracely RH, McGrath F, Dubner R. Ratio scales of sensory and
affective verbal pain descriptors. Pain 1978; 5:5-18
35. Max MB, Lynch SA, Muij J, Shoff SE, Smoller B, Dubner R. Effects
of desipramine, amitriptyline, and fluoxetine on pain in diabetic neu-
36. Simone DA, Baumann TK, LaMotte RH: Dose-dependent pain and
mechanical hyperalgesia in humans after intradermal injection of
37. Woolf CJ: Windup and central sensitization are not equivalent
38. Bleakman D, Ballyk BA, Schoepf DD, Palmer AJ, Bath CP, Sharpe
EF, Woolley ML, Butfon HR, Kamarck JK, Tarnawa I, Lodge D: Activity
of 2,3-benzodiazepines at native rat and recombinant human glutamate
receptors in vitro: Stereosepecificity and selectivity profiles. Neurophar-
macology 1996; 35:1699-702
39. Bleakman D, Schoepf DD, Ballyk B, Butfon H, Sharpe EF,
Thomas K, Ornstein PL, Kamarck JK. Pharmacological discrimination of
GluR5 and GluR6 kainate receptor subtypes by (3S,4aR,6R,8aR)-6-(2-
(1H)-tetrazole-5-y)ethyl]decahydrosisooquinoline-3-carboxylic acid.
40. Bleakman D, Ballyk B, Hoo K, Ornstein PL, Kamarck BJ, Schoepf
DD: Glutamate receptor profile of the AMPA/kainate receptor antago-
41. Castillo PE, Malenka RC, Nolick RA: Kainate receptors mediate a
slow postsynaptic current in hippocampal CA3 neurons. Nature 1997;
388:182-6
42. Lerma J, Morales M, Vicente MA, Herreras O: Glutamate recep-
tors of the kainate type and synaptic transmission. Trends Neurosci
1997; 20:9-12
43. Agarwal SG, Evans RH: The primary afferent depolarization of
kainate in the rat. Br J Pharmacol 1986; 87:545-55
44. Tsumoto T: Excitatory amino acid transmitters and their recep-
tors in neural circuits of the cerebral neocortex. Neurosci Res (N Y)
1990; 9:79-102
45. Birns KE, Salt TE: Excitatory amino acid receptors participate in
synaptic transmission of visual responses in the superficial layers of the

Anesthesiology, V 89, No 5, Nov 1998