study, platelet function was altered intraoperatively in the control group, whereas (1) aprotinin preserved spontaneous platelet aggregation and ADP induced platelet aggregation and platelet adhesivity; and (2) postoperative platelet aggregates concentration decreased significantly with aprotinin when compared with placebo. We have not discussed liver transplantation because aprotinin has failed to significantly decrease blood loss in such cases.

That aprotinin can achieve by different mechanisms an identical therapeutic goal in different surgical fields would be puzzling. Consequently, in regard to the mechanism of the blood-sparing effect of aprotinin, it is our opinion that this hypothesis should be revisited.

Claude Lentschener, M.D.
Staff Anesthesiologist
Dan Benhamou, M.D.
Professor Department of Anesthesiology
Hôpital Antoine-Beclere
Université Paris-Sud
157, rue de la Porte de Trivaux
92241 Clamart Cedex, Paris France
dBenhamou.beclere@invivo.edu

References


(Accepted for publication July 20, 1998)

In Reply—I would like to thank Dr. Lentschener and Dr. Benhamou for the attentive reading they have accorded to our article.

Although the mechanisms underlying the beneficial effects of aprotinin on blood loss during surgery were not fully elucidated, reconsidering the hypotheses evoked in the literature involving platelet receptor protection may not be fully justified.

The complex action of aprotinin, a natural serine protease inhibitor, is situated at the cross-section of several reactions triggered during surgery: contact phase activation, tissue factor and tissue plasminogen activator (tPA) release from subendothelial sites, plasmin activation by kallikrein and activated factor XII, as well as the release of kinins and activated C3b fragments. Furthermore, aprotinin activation depends on blood aprotinin levels, and as such the administered perioperative dose, whether or not cardiopulmonary bypass (CPB) is used.

Major surgery can activate the extrinsic coagulation pathway by the release of tissue factor from the endothelial cells. Aprotinin can limit the onset of disseminated intravascular coagulopathy (DIC) via its anti-Via activity.

Aprotinin’s role in the inhibition of fibrinolysis, reported primar-
Perfuse or Precondition?

To the Editor:—We read with interest the case report about coronary revascularization without cardiopulmonary bypass. In the article, the authors discuss ischemic preconditioning to prepare the myocardium for a 5- to 15-min period of coronary occlusion. The authors cite, “brief periods of occlusion have been shown to paradoxically protect or precondition the heart and to reduce the infarct size caused by a subsequent period of coronary artery occlusion.” The key point is that in undertaking an operation to protect or save myocardium, this procedure already acknowledges that one is going to kill some off—but only a little.

Our question is why precondition? Why not perfuse? In a case report published in another journal, we described the use of a perfusion cannula connected from the side port of a femoral artery DLP cannula. The perfusion cannula is inserted into the coronary artery under direct visualization. This allows oxygenated arterial blood to perfuse the myocardium during the period of anastomosis. This is similar in function to a shunt used during a carotid endarterectomy. It is not necessary to use a femoral perfusion cannula to make this system work; many innovative sites, catheters, and tubing can be used. The key here is the concept of maintaining perfusion to the myocardium during the period of anastomosis to prevent infarction. Minimally invasive cardiac surgery that avoids the use of cardiopulmonary bypass is an important new procedure that will only increase in popularity as new technologies and techniques continue to make it safer and more effective.

Michael F. Borges, M.D.
Staff Anesthesiologist
Alan S. Coulson, M.D.
Director of Heart Institute
Staff Cardiovascular and Vascular Surgeon
Dameron Hospital
Stockton, California
dmrnborges@concentric.net

References


Accepted for publication July 30, 1998.

Anesthesiology, V. 89, No. 6, Dec 1998

Xavier Capdevila, M.D., Ph.D.
Associate Professor of Anesthesiology
Lapeyronie University Hospital
371, Av du Docteur
Gaston Giraud Montpellier Cedex 5
Paris 34295, France

References


Accepted for publication July 20, 1998.

Anesthesiology, 1998; 89:1600
© 1998 American Society of Anesthesiologists, Inc.
Lippincott Williams & Wilkins