Assessment of Changes in Coagulation in Parturients with Preeclampsia Using Thromboelastography

Shiv K. Sharma, M.D., F.R.C.A.,* John Philip, M.D.,† Charles W. Whitten, M.D.,‡ Udaya B. Padakandla, M.D.,§ Dennis F. Landers, M.D., Ph.D.¶

Background: Preeclampsia is associated with a risk of abnormal hemostasis that occurs most commonly secondary to thrombocytopenia. Thromboelastography measures whole blood coagulation and has been used to manage coagulation defects in obstetric patients. The authors conducted this investigation in a large number of preeclamptic women to assess changes in coagulation using thromboelastography.

Methods: Thromboelastography and platelet counts were performed in 52 healthy pregnant women, 140 mild preeclamptic women, and 114 severe preeclamptic women in active labor using disposable plastic cups and pins and native whole blood. In preeclamptic patients with a platelet count <100,000/mm³, conventional coagulation tests were also performed. Epidural analgesia was provided in some women when they requested pain relief.

Results: Fifteen percent of all preeclamptic women (38 of 254) and 2% (1 of 52) of healthy pregnant women had a platelet count <100,000/mm³. The incidence of thrombocytopenia <100,000/mm³ was 3% (4 of 140) and 30% (34 of 114) in mild preeclamptic patients and severe preeclamptic patients, respectively. Severe preeclamptic patients with a platelet count <100,000/mm³ were significantly hypocoagulable when compared to the other study groups. Ten severe preeclamptic women with a platelet count <100,000/mm³ had a maximum amplitude <54 mm (the lower limit of maximum amplitude in healthy pregnant women enrolled in this investigation). None of the mild preeclamptic women had a maximum amplitude <54 mm. Five severe preeclamptic women with a platelet count <100,000/mm³ had an abnormal coagulation profile, whereas all four mild preeclamptic women with a platelet count <100,000/mm³ had a normal coagulation profile.

Conclusion: This study shows that severe preeclamptic women with a platelet count <100,000/mm³ are hypocoagulable when compared to healthy pregnant women and other preeclamptic women. (Key words: Coagulopathy; epidural analgesia; neurologic complications.)

PREECLAMPSIA is associated with a risk of abnormal hemostasis that occurs most commonly because of thrombocytopenia,1,2 and rarely because of mild disseminated intravascular coagulation.3,4 The risk of abnormal hemostasis increases with the severity of preeclampsia.1 The platelet count is routinely used as a primary test to evaluate the coagulation status in preeclamptic parturients.5 It has been shown that when the platelet count is less than 100,000/mm³, other hemostatic abnormalities, such as prolonged prothrombin time (PT) and partial thromboplastin time (PTT), and reduced fibrinogen concentration may also be present.6 As a result, PT, PTT, and fibrinogen levels have been recommended to evaluate hemostasis when preeclampsia is complicated by a platelet count <100,000/mm³.6

Thromboelastography is commonly used to assess coagulation during cardiopulmonary bypass surgery and liver transplantation.7,8 It measures whole blood coagulation and provides information about the adequacy of platelet function and all other clotting factors in a short time.9,10 Recently, many investigators have used thromboelastography to manage coagulation defects in obstetric patients.11-13 Furthermore, a study in preeclamptic women showed that the maximum amplitude (MA) from thromboelastography has a better correlation with a low platelet count than bleeding time has with low platelet count.14

We conducted this investigation in a large number of preeclamptic women to assess changes in coagulation using thromboelastography in relation to conventional tests of hemostasis.

Methods

After Institutional Review Board approval, informed consent to collect blood samples for thromboelasto-
SHARMA ET AL.

Table 1. Demographic and Hematologic Data

<table>
<thead>
<tr>
<th></th>
<th>Normal Pregnancy (n = 52)</th>
<th>Mild Preeclampsia (n = 140)</th>
<th>Severe Preeclampsia with PC ≥ 100,000/mm² (n = 80)</th>
<th>Severe Preeclampsia with PC < 100,000/mm² (n = 34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age [yr]</td>
<td>25 ± 5</td>
<td>24 ± 6</td>
<td>26 ± 6</td>
<td>26 ± 6</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>77 ± 15</td>
<td>74 ± 15</td>
<td>77 ± 13</td>
<td>79 ± 16</td>
</tr>
<tr>
<td>Height [cm]</td>
<td>158 ± 8</td>
<td>155 ± 8</td>
<td>158 ± 8</td>
<td>155 ± 8</td>
</tr>
<tr>
<td>Gestational age [wk]</td>
<td>38 ± 2 (31–42)</td>
<td>38 ± 4 (26–42)</td>
<td>38 ± 3 (27–42)</td>
<td>37 ± 4 (27–42)</td>
</tr>
<tr>
<td>Platelet count [1,000/mm³]</td>
<td>225 ± 58 (91–400)</td>
<td>230 ± 67 (84–409)</td>
<td>220 ± 67 (115–351)</td>
<td>67 ± 17 (37–98)</td>
</tr>
<tr>
<td>Hematocrit [%]</td>
<td>35.9 ± 3.4</td>
<td>35.6 ± 3.5</td>
<td>34.4 ± 4.8</td>
<td>34.1 ± 5.1</td>
</tr>
<tr>
<td>Predelivery</td>
<td>32.2 ± 4.3†</td>
<td>31.6 ± 4.7†</td>
<td>33.3 ± 3.3†</td>
<td>32.6 ± 3.6†</td>
</tr>
</tbody>
</table>

Data are mean ± SD and range.

* P < 0.05 versus normal pregnant women and mild and severe preeclamptic women with PC ≥ 100,000/mm².
† P < 0.05 versus predelivery values.

graphic analysis was obtained from 52 healthy pregnant women in active labor and 254 laboring preeclamptic women at Parkland Hospital in Dallas from January 1995–June 1996. Mild preeclampsia was defined as a systolic blood pressure > 110 mmHg, a diastolic blood pressure > 90 mmHg, and proteinuria > 1 g/l (2 + using dipstick measurements). Severe preeclampsia was diagnosed by one or more of the following criteria: a systolic blood pressure > 160 mmHg, a diastolic blood pressure > 110 mmHg, and proteinuria of 3+ to 4+ g/l using dipstick measurements. Obstetric treatment of preeclamptic women included magnesium sulphate for seizure prophylaxis and intermittent intravenous hydralazine to lower diastolic blood pressure that had reached 110 mmHg or greater. Healthy pregnant women were initially studied to determine baseline values of thromboelastographic parameters in healthy pregnant women. Laboratory tests that were performed both in healthy pregnant and in preeclamptic women included a hematocrit level and a platelet count using a Coulter counter, which is very accurate even at low platelet counts. Thromboelastography was performed on Thromboelastograph, computerized version (Haemoscope Corp., Skokie, IL), using disposable plastic cups and pins and native whole blood, after admission to the delivery suite or before epidural placement for labor pain relief. Blood was collected from a peripheral vein via an 18-gauge needle using a two-syringe technique. The first sample was discarded to avoid tissue contamination of blood, whereas the second sample was used for thromboelastographic measurements and other laboratory tests. Three hundred sixty microliters of whole blood was pipetted into a disposable plastic cup within 4 min of blood sampling, and then placed in a prewarmed (37°C) thromboelastograph.

Thromboelastographic parameters included reaction time (r), clot formation time (K), MA, clot formation rate (α angle), and a thromboelastographic coagulation index (CI). A thromboelastographic CI is derived from a linear equation that combines all the thromboelastographic parameters (native whole blood: CI = −(0.1227)r + (0.0092)K + (0.1655)MA − (0.041)α − 5.0220; normal range for nonpregnant women = +2 to −2). A coagulation profile, including PT, activated PTT (aPTT), and fibrinogen concentration, was also performed in all preeclamptic women with a platelet count < 100,000/mm².

Epidural analgesia was provided when women requested pain relief. In preeclamptic women with a platelet count < 100,000/mm², thromboelastographic parameters from healthy pregnant women were used as a reference for epidural placement. Epidural placement was performed in the sitting position via a midline approach at interspace L2-L3 or L3-L4 using a 17-gauge Tuohy needle and a 20-gauge multiorifice catheter and loss of resistance to air to identify the epidural space. The local anesthetic used for labor analgesia was boluses of bupivacaine, 0.25%, followed by an infusion of bupivacaine, 0.125%. All women were observed for neurologic complications in the postdelivery period.

All data are expressed as mean ± SD (range), n(%). Data were analyzed using SAS statistical software (SAS Institute, Cary, NC). Analysis of parametric data was performed by one-way analysis of variance, and results were assessed by Bonferroni post hoc test. Pearson correlation was performed between thromboelastographic...
Table 2. Thromboelastographic Parameters

<table>
<thead>
<tr>
<th></th>
<th>Normal Pregnancy (n = 52)</th>
<th>Mild Preeclampsia (n = 140)</th>
<th>Severe Preeclampsia with PC ≥ 100,000/mm³ (n = 80)</th>
<th>Severe Preeclampsia with PC < 100,000/mm³ (n = 34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>r (mm)</td>
<td>26.5 ± 7.5 (13-42)</td>
<td>29.5 ± 7.2 (13-42)</td>
<td>29.6 ± 7.6 (15-42)</td>
<td>37.4 ± 9.9 (19-63)*</td>
</tr>
<tr>
<td>K (mm)</td>
<td>10.2 ± 3.5 (5-20)</td>
<td>10.8 ± 3.7 (5-25)</td>
<td>11.6 ± 4.2 (6-22)</td>
<td>20.9 ± 7.4 (7-37)*</td>
</tr>
<tr>
<td>MA (mm)</td>
<td>66.5 ± 7.1 (54-80)</td>
<td>69.3 ± 7.3 (54-80)†</td>
<td>66.1 ± 6.9 (54-80)</td>
<td>52.1 ± 10.6 (34-78)*</td>
</tr>
<tr>
<td>α angle (°)</td>
<td>43.1 ± 9.1 (27-64)</td>
<td>41.6 ± 9.8 (26-72)</td>
<td>39.9 ± 9.4 (26-64)</td>
<td>23.6 ± 9.1 (13-47)*</td>
</tr>
</tbody>
</table>

Values are mean ± SD (range).

PC = platelet count; r = reaction time; K = clot formation time; α angle = clot formation rate (°); MA = maximum amplitude (clot strength) (mm).

*P < 0.001 versus normal pregnant, mild preeclamptic and severe preeclamptic women with PCs ≥ 100,000/mm³.
†P < 0.05 versus normal pregnant and all severe preeclamptic women.

parameters and laboratory tests. All tests were two-sided and a P value ≤0.05 was considered significant.

Results

In this study, thromboelastography was performed in 306 women. Of these 306 women, 52 were healthy pregnant women, 140 were mild preeclamptic, and 114 were severe preeclamptic. Demographic characteristics with regards to age, weight, height, and gestational age were similar in all four groups (table 1). Hematocrit values were significantly reduced in the postdelivery period in all groups. Platelet counts were similar in healthy pregnant women, mild preeclamptic women, and severe preeclamptic women with a platelet count ≤100,000/mm³ (table 1). Results of the coagulation profile in preeclamptic women with a platelet count <100,000/mm³ (n = 38) were as follows: PT = 11.7 ± 2.1 (range, 10-18 s); PTT = 31.6 ± 5.7 (range, 20-51 s); fibrinogen = 349 ± 135 mg/dl (range, 93-587 mg/dl).

There was no significant difference in thromboelastography parameters r, K, α angle, and thromboelastography CI between healthy pregnant women, mild preeclamptic women and severe preeclamptic women with a platelet count ≥100,000/mm³ (table 2; fig. 1). However, in mild preeclamptic women, MA was significantly hypercoagulable compared to healthy pregnant and all severe preeclamptic women (table 2). All thromboelastography parameters were significantly hypocoagulable in severe preeclamptic women with a platelet count <100,000/mm³ when compared to normal pregnant women, mild preeclamptic women, and severe pre-

Table 3. Women with Abnormal TEG (MA < 54 mm, i.e., Lower Limit of Normal Pregnant Women in This Study) and Abnormal Coagulation Profiles

<table>
<thead>
<tr>
<th></th>
<th>Normal Pregnant (n = 52)</th>
<th>Mild Preeclampsia (n = 140)</th>
<th>Severe Preeclampsia (n = 114)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelet count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 150,000/mm³</td>
<td>47 (90)</td>
<td>126 (90)</td>
<td>64 (56)</td>
</tr>
<tr>
<td>100,000/mm³ - 149,000/mm³</td>
<td>4 (8)</td>
<td>10 (7)</td>
<td>15 (14)</td>
</tr>
<tr>
<td>< 100,000/mm³</td>
<td>1 (2)</td>
<td>4 (3)</td>
<td>34 (30)</td>
</tr>
<tr>
<td>MA < 54 mm</td>
<td>0</td>
<td>0</td>
<td>10 (9)</td>
</tr>
<tr>
<td>Abnormal coagulation profile</td>
<td>NA</td>
<td>0/4</td>
<td>5/34 (12)</td>
</tr>
</tbody>
</table>

Values are n (%).

MA = maximum amplitude, mm (clot strength); NA = not available.

* Abnormal coagulation profile = at least one abnormal value in the coagulation profile (prothrombin time (normal range 11.5-13 s), partial thromboplastin time (normal range 26-38 s), and fibrinogen (normal range 148-400 mg/dl). Coagulation profile was performed only in preeclamptic women with platelet counts <100,000/mm³.

Anesthesiology, V 90, No 2, Feb 1999
Table 4. Details of 10 Severe Preeclamptic Women with Abnormal MA (i.e., MA < 54 mm, Lower Limit of Normal Pregnant Women in This Study)

<table>
<thead>
<tr>
<th>Maximum Amplitude (mm)</th>
<th>Platelet Count (100,000/mm³)</th>
<th>Prothrombin Time (s)</th>
<th>Partial Thromboplastin Time (s)</th>
<th>Fibrinogen (mg/dl)</th>
<th>Epidural Analgesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>57</td>
<td>11</td>
<td>29</td>
<td>321</td>
<td>No</td>
</tr>
<tr>
<td>42</td>
<td>60</td>
<td>12</td>
<td>27</td>
<td>327</td>
<td>No</td>
</tr>
<tr>
<td>53</td>
<td>63</td>
<td>10</td>
<td>33</td>
<td>445</td>
<td>No</td>
</tr>
<tr>
<td>47</td>
<td>57</td>
<td>12</td>
<td>37</td>
<td>321</td>
<td>No</td>
</tr>
<tr>
<td>49</td>
<td>60</td>
<td>12</td>
<td>34</td>
<td>327</td>
<td>No</td>
</tr>
<tr>
<td>51</td>
<td>53</td>
<td>12</td>
<td>30</td>
<td>147*</td>
<td>No</td>
</tr>
<tr>
<td>41</td>
<td>49</td>
<td>12</td>
<td>35</td>
<td>119*</td>
<td>No</td>
</tr>
<tr>
<td>36</td>
<td>52</td>
<td>18*</td>
<td>39*</td>
<td>107*</td>
<td>No</td>
</tr>
<tr>
<td>34</td>
<td>66</td>
<td>17*</td>
<td>36</td>
<td>132*</td>
<td>No</td>
</tr>
<tr>
<td>43</td>
<td>37</td>
<td>18*</td>
<td>51*</td>
<td>93*</td>
<td>No</td>
</tr>
</tbody>
</table>

Platelet count (normal range 150,000–450,000/mm³), maximum amplitude, mm (clot strength), prothrombin time (normal range 11.5–13 s), partial thromboplastin time (normal range 26–38 s), fibrinogen (normal range 148–400 mg/dl).

* Abnormal coagulation profile.

Severe preeclamptic women with a platelet count < 100,000/mm³ (table 2, fig. 1).

Fifteen percent of all preeclamptic women (38 of 254) and 2% (1 of 52) of healthy pregnant women had a platelet count < 100,000/mm³. The incidence of thrombocytopenia < 100,000/mm³ was 3% (4 of 140) and 30% (54 of 114) in mild preeclamptic women and severe preeclamptic women, respectively (table 3). Of the 114 severe preeclamptic women, 10 women with a platelet count < 100,000/mm³ had an MA < 54 mm, which was the lower limit of MA in healthy pregnant women enrolled in this investigation (tables 3 and 4). None of the mild preeclamptic women had an MA < 54 mm. Five severe preeclamptic women with a platelet count < 100,000/mm³ had an abnormal coagulation profile, whereas all four mild preeclamptic women with a platelet count < 100,000/mm³ had a normal coagulation profile (tables 3 and 4).

Correlation coefficients between the platelet count and thromboelastography parameters are shown in table 5.

Reaction time (r) had a weak correlation with the platelet count (r = -0.13, P = 0.05). Correlation of the platelet count with MA and thromboelastography CI was stronger in women with a low platelet count. The correlation coefficient of a platelet count < 150,000/mm³ with MA was r = 0.61 (P < 0.01) and with thromboelastography CI was r = 0.55 (P < 0.001), and the correlation coefficient of a platelet count < 100,000/mm³ with MA was r = 0.61 (P < 0.001) and with thromboelastography CI was r = 0.65 (P < 0.001). The relationship between the platelet count and MA for severe preeclamptic women and for all women together is shown in figure 2 and figure 3, respectively. This relation was linear for women with platelet counts < 100,000/mm³ (fig. 2).

One hundred eighty-three women, including 35 healthy pregnant women, 85 mild preeclamptic women, and 65 severe preeclamptic women, received epidural analgesia during labor. No patient after epidural analgesia had any neurologic complications in the postdelivery period.

Table 5. Correlation Coefficients (P Value) between Platelet Count and TEG Parameters (K, MA, × Angle, and TEG Coagulation Index)

<table>
<thead>
<tr>
<th></th>
<th>K (mm)</th>
<th>MA (mm)</th>
<th>× Angle (°)</th>
<th>TEG Coagulation Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients (n = 306)</td>
<td>-0.42 (<-0.001)</td>
<td>0.49 (0.001)</td>
<td>0.42 (<-0.001)</td>
<td>0.44 (<-0.001)</td>
</tr>
<tr>
<td>Preeclamptics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All women (n = 254)</td>
<td>-0.42 (<-0.001)</td>
<td>0.52 (<-0.001)</td>
<td>0.42 (<-0.001)</td>
<td>0.47 (<-0.001)</td>
</tr>
<tr>
<td>Platelet count < 150,000 mm³ (n = 64, 25%)</td>
<td>-0.47 (<-0.001)</td>
<td>0.61 (<-0.001)</td>
<td>0.45 (-0.01)</td>
<td>0.55 (<-0.001)</td>
</tr>
<tr>
<td>< 100,000 mm³ (n = 38, 15%)</td>
<td>-0.41 (0.018)</td>
<td>0.61 (<-0.001)</td>
<td>0.38 (0.029)</td>
<td>0.65 (<-0.001)</td>
</tr>
</tbody>
</table>

K = clot formation time; × angle = clot formation rate; MA = maximum amplitude (clot strength).

Anesthesiology, V 90, No 2, Feb 1999
THROMBOELASTOGRAPHY IN PREECLAMPTIC WOMEN

Fig. 2. The relation between platelet count and maximum amplitude (MA) in severe preeclamptic women is represented with a negative exponential curve of best fit using nonlinear regression techniques. The scattergram of observed pairs of values are shown, as well as the estimated curve based on the equation MA = 68 - 357 × exp(-(x - 50)/15).

Discussion

This study of coagulation using thromboelastography shows that mild preeclamptic women are hypercoagulable when compared to healthy pregnant women. However, as the severity of preeclampsia increases, blood coagulability decreases, and severe preeclamptic women with a platelet count <100,000/mm³ are significantly hypocoagulable when compared to healthy pregnant women, mild preeclamptic women, and severe preeclamptic women with a platelet count ≥100,000/mm³. There is a strong correlation between a low platelet count and MA from thromboelastography.

Thromboelastography measures whole blood coagulation and provides information about the adequacy of platelet function and other clotting factors, all in a short time. Thromboelastographic parameters are interrelated and reflect activities of clotting factors, platelets, and fibrinogen, and their interaction, whereas coagulation profiles monitor an isolated portion of the coagulation cascade and do not reflect the interaction among clotting factors, platelets, and fibrinogen. Therefore, thromboelastography provides a better assessment of whole blood coagulability than does routine coagulation profiles. The principle and interpretation of thromboelastography is well described in the literature. Individual thromboelastographic parameters from thromboelastography include r, which indicates clotting factor activity, and K, MA, and α angle, which indicate platelet and fibrinogen activity. In addition, a computerized thromboelastographic CI derived from r, K, MA, and α angle can be used to reflect all activities of clotting factors, platelets, and fibrinogen. Because it combines all the parameters from a thromboelastograph, a CI reflects the overall coagulability of blood. Normal values for CI in nonpregnant women for native whole blood, using disposable cups and pins, range from -2 to +2. Outside this range, a more positive value would reflect greater hypercoagulability, whereas a more negative value would reflect greater hypocoagulability.

As shown previously and in this study, mild preeclamptic women were hypercoagulable when compared to healthy pregnant women, as reflected by an increase in MA. However, severe preeclamptic women with a platelet count <100,000/mm³ were significantly hypocoagulable when compared to all other women, as shown by an increase in r and K and a reduction in α angle and MA. It suggests that severe preeclamptic women begin to show significant hypocoagulability when the platelet count decreases to <100,000/mm³. Leduc et al. demonstrated that in severe preeclamptic women when the platelet count is less than 100,000/mm³, other coagulation indices also become abnormal. They have therefore recommended PT, PTT, and fibrinogen levels in these instances to detect additional hemostasis abnormalities.

After Ramanathan et al. and Schindler et al. demonstrated a prolonged bleeding time in severe pre-

Fig. 3. A scattergram plotting platelet count versus maximum amplitude in healthy pregnant, mild preeclamptic, and severe preeclamptic women.
eclamptic women with platelet counts less than 100,000/mm³, some anesthesiologists have long presumed a connection between a prolonged bleeding time (> 10 min) and the risk of epidural hematoma formation in patients with severe preeclampsia. Schindler et al.19 recommended bleeding time in preeclamptic women with platelet counts <100,000/mm³ before providing regional anesthesia. However, there is no evidence to suggest that a bleeding time >10 min is associated with an increased risk of epidural hematoma formation after epidural anesthesia in preeclamptic women. Furthermore, Channing-Rodgers and Levin,20 in their review of 862 publications of bleeding time, indicated that bleeding time is not a sensitive indicator of platelet function and does not reliably predict the risk of hemorrhage. The recommendation by some authorities that epidural analgesia be withheld in women whose platelet count is <100,000/mm³ has no supporting experimental data. Preeclamptic women with platelet counts much less than 100,000/mm³ have received uncomplicated epidural anesthesia.21-25 In our study, 183 women, including 27 preeclamptic women with a platelet count <100,000/mm³, received epidural analgesia during labor. Neurologic complications did not develop in any of these women; however, given the limited number of patients, we cannot make any comments regarding the safety of epidural anesthesia in such patients or about the risk of epidural hematomas in patients with coagulopathies.

In conclusion, this study shows that severe preeclamptic women with platelet counts <100,000/mm³ are significantly hypocoagulable when compared to healthy pregnant women, mild preeclamptic women, and severe preeclamptic women with platelet counts ≥100,000/mm³. The level of thrombocytopenia or thromboelastography parameters that would safely allow epidural anesthesia in preeclamptic women is not known. Finally, thromboelastography may be used to assess hemostasis in preeclamptic women.

The authors thank Jackie Wiley, R.N., for assistance in data collection, and Vladislav Markin, Ph.D., for assistance in statistical analysis.

References

18. Ramanathan J, Sibai BM, Vu T, Chauhan D: Correlation between bleeding times and platelet counts in women with preeclampsia undergoing cesarean section. ANESTHESIOLOGY 1989; 71:1888-91
22. Bellin Y, Jahn J, Comerford M: Safe epidural analgesia in thirty parturients with platelet counts between 69,000 and 98,000 mm³. Anesth Analg 1997; 85:385-8

Anesthesiology, V 90, No 2, Feb 1999