that the case of Harden et al. should not be regarded as a true Lazarus phenomenon because there is no indication that CPR had been stopped at the time when spontaneous conversion of ventricular fibrillation occurred.

With regard to prevention of Lazarus phenomena, Frölich suggests to continue CPR until ineffectiveness has been shown by a decreasing pH with adequate ventilation. Although this approach is probably correct, there are no defined pH values below which resuscitation can be considered futile. In the case of Fumeaux et al., the patient survived neurologically intact after cessation of CPR at a pH of 6.54. An alternative approach might be end-tidal carbon dioxide. Its use for therapeutic and prognostic decisions during CPR was first proposed by Eisenmenger, and studied in detail by Smalhout. In the last 20 years there have been several studies on capnography during CPR. Values greater than 10-15 mmHg indicate a favorable prognosis and should preclude termination of CPR. Unfortunately, there are no capnography data in the Lazarus cases published to date, including ours and that of Frölich.

Wolfgang H. Maleck, A.R.Z.T.
Sven N. Piper, M.D.
Department of Anesthesiology
Klinikum
D-67063 Ludwigshafen, Germany
wolfgang_maleck@hotmail.com

Spontaneous Recovery after Discontinuation of Cardiopulmonary Resuscitation

To the Editor:—I read with interest the case report from Dr. Frölich on spontaneous recovery after discontinuation of intraoperative cardiopulmonary resuscitation (CPR). This rare and unsettling occurrence was also observed recently in our intensive care unit, although the postulated etiology differs from the published case.

A 76-yr-old man with severe bullous chronic obstructive pulmonary disease had been admitted in extremis requiring urgent intubation and ventilation. Within minutes he had suffered cardiac arrest from which he was resuscitated, although with evidence of residual hypoxic encephalopathy. He was resistant to attempts to wean him from mechanical ventilatory support. On the eighth day, while the patient was undergoing synchronized intermittent mandatory ventilation with pressure support, it was noted that the ventilator pressures were fluctuating widely, although delivered tidal volume was constant. He rapidly developed a profound bradycardia and increasing cyanosis. The ventilator was disconnected and manual ventilation with a self-inflating bag and chest compressions were started. In response to 0.6 mg atropine and 1 mg epinephrine, he developed a ventricular tachycardia that progressed to ventricular fibrillation. Direct current defibrillation led to a wide complex rhythm that progressed to asystole despite further pharmacologic intervention (including additional epinephrine, dopamine, bicarbonate, and lignocaine). It was noted throughout that ventilatory compliance was poor, although there was bilateral air entry, the trachea was central, and the ready passage of a large bore suction catheter suggested tube patency was not compromised. An arterial blood gas analysis during CPR showed pH 6.92, PaO2 117 mmHg, PaCO2 327 mmHg, and base excess -10 mEq/L.

After 30 min of CPR with no evidence of spontaneous circulation and asystole in all electrocardiogram leads, resuscitative efforts were discontinued. The endotracheal tube was removed, and examination of it showed nothing untoward; the electrocardiogram remained connected. After 5 min return of cardiac electrical activity was noted, which progressed to sinus tachycardia accompanied by good volume pulses and spontaneous respiratory effort.

Arterial blood gas analysis shortly thereafter, with the patient breathing spontaneously with PaO2 0.24, showed pH 7.19, PaCO2 64 mmHg,

References

1. Frölich MA: Spontaneous recovery after discontinuation of intraoperative cardiopulmonary resuscitation. Anesthesiology 1999; 89:1252-3

(Accepted for publication March 25, 1999.)
Twenty-four hours later there was further deterioration in his condition as a consequence of excessive end-expiratory ventilation with no spontaneous recovery after unsuccessful resuscitation, including one of his own cases in which a patient was resuscitated for asystolic arrest for approximately 30 min and showed return of spontaneous circulation cannot be re-established over an extended period of time. However, it seems to be reasonable to discontinue CPR if effective circulation cannot be re-established over an extended period of time.

From my own and similar reported cases, I have learned that CPR should not automatically be discontinued if the end of the ACLS algorithm has been reached. Resuscitation may have to be continued until proven ineffective by parameters such as end-tidal CO₂ or metabolic deterioration.

References


(Accepted for publication March 25, 1999.)