Ketamine Distribution Described by a Recirculatory Pharmacokinetic Model Is Not Stereoselective

Thomas K. Henthorn, M.D.,* Tom C. Krejcie, M.D.,† Claus U. Niemann, M.D.,‡ Cheri Enders-Klein, B.A.,§ Colin A. Shanks, M.D.,|| Michael J. Avram, Ph.D.#

Background: Differences in the pharmacokinetics of the enantiomers of ketamine have been reported. The authors sought to determine whether these differences extend to pulmonary uptake and peripheral tissue distribution and to test the hypothesis that tissue distribution of the stereoisomers differs because of carrier-mediated drug transport.

Methods: The dispositions of markers of intravascular space and blood flow (indocyanine green, ICG) and total body water and tissue perfusion (antipyrine) were determined along with $S(\pm)$- and $R(\pm)$-ketamine in five mongrel dogs. The dogs were studied while anesthetized with 2.0% halothane. Marker and drug dispositions were described by recirculatory pharmacokinetic models based on frequent early and less-frequent later arterial blood samples. These models characterize pulmonary uptake and the distribution of cardiac output into parallel peripheral circuits.

Results: Plasma elimination clearance of the $S(\pm)$-ketamine enantiomer, 29.9 ml · min$^{-1}$ · kg$^{-1}$, was higher than that of the $R(\pm)$-enantiomer, 22.2 ml · min$^{-1}$ · kg$^{-1}$. The apparent pulmonary tissue volumes of the ketamine $S(\pm)$ and $R(\pm)$-enantiomers (0.31 l) did not differ and was approximately twice that of antipyrine (0.16 l). The peripheral tissue distribution volumes and clearances and the total volume of distribution (2.1 l/kg) were the same for both stereoisomers when elimination clearances were modeled from the rapidly equilibrating peripheral compartment.

Conclusions: Although the elimination clearance of $S(\pm)$-ketamine is 35% greater than that of the $R(\pm)$-enantiomer, there is no difference in the apparent pulmonary tissue volume or peripheral tissue distribution between the stereoisomers, suggesting that physicochemical properties of ketamine other than stereoisomerism determine its perfusion-limited tissue distribution. (Key words: Antipyrine; canine; indocyanine green; mean transit time.)

KETAMINE, a drug used for the induction and maintenance of anesthesia, exists as a racemic (50:50) mixture of $R(\pm)$- and $S(\pm)$-enantiomers. Previous studies of the pharmacokinetics of ketamine have shown that the disposition of the $R(\pm)$ and $S(\pm)$-enantiomers differ. Studies first showed that the elimination clearance ($Cl_E$) of the $S(\pm)$-isomer exceeded that of $R(\pm)$ in rodents.1,2 White et al.3 studied the clinical pharmacology of the two enantiomers of ketamine in humans and found kinetic differences similar to those found previously in animals. A detailed pharmacokinetic study in healthy volunteers by Geisslinger et al.4,5 found differences in both the $Cl_E$ and the volumes of distribution between the two enantiomers. Further investigation showed that there are significant pharmacodynamic differences between the enantiomers as well.6 The $S(\pm)$-enantiomer is approximately twice as potent as a sedative-hypnotic as is the $R(\pm)$-enantiomer, whereas the $R(\pm)$-enantiomer appears to have a greater potency for producing unwanted psychotropic side effects. These differences in
pharmacodynamics led to the commercial introduction of the S(+)-enantiomer in the European market.7

The intensity and timing of the onset of drug effect for rapidly acting intravenous anesthetics, such as ketamine, are influenced by factors that affect the early arterial drug concentration versus time profile.8 These factors include intravascular mixing, pulmonary uptake, and distribution to highly perfused tissues.9 Our recently developed recirculatory pharmacokinetic model describes these processes by referencing them to the disposition of markers of intravascular space and body water, indocyanine green (ICG), and antipyrine.10,11

It has been suggested recently that distribution of drugs to tissue may be affected by carrier-mediated transport across the endothelium, in addition to blood flow and diffusion.12 We have shown that pulmonary uptake of fentanyl involves, not only passive diffusion, but also carrier-mediated endothelial transport.13 Studying the simultaneous disposition of the stereoisomers of ketamine offers a unique opportunity to test the hypothesis that tissue distribution of the stereoisomers differs because of carrier-mediated drug transport because such transport might be expected to be stereoselective. If the distribution clearances of either or both ketamine stereoisomers are affected by carrier-mediated transport, they will differ significantly from that of antipyrine, a pharmacologically inert pharmacokinetic prototype for many lipophilic drugs, including intravenous anesthetics.14 Antipyrine distributes to a volume as large as total body water,15 including pulmonary extravascular water,16 in a blood flow-dependent manner.17

Therefore, we sought to study the pulmonary uptake, systemic tissue distribution, and elimination of antipyrine and the $R(-)$ and $S(\uparrow)$-enantiomers of ketamine in dogs using frequent arterial sampling and recirculatory pharmacokinetic analysis.

### Materials and Methods

#### Experimental Protocol

Five male dogs, weighing 27.5–33 kg (30.2 ± 2.4 kg, table 1), were studied in this Institutional Animal Care and Use Committee–approved study. After an overnight fast, during which water was allowed *ad libitum*, the dog was brought to the laboratory. Anesthesia was induced with methohexital (10–15 mg/kg intravenous) *via* a foreleg vein, the trachea was intubated with a 9-mm endotracheal tube, and the animal was placed in the left lateral decubitus position. Mechanical ventilation was instituted at a tidal volume of 20–25 ml/kg and at a rate sufficient to maintain end-tidal carbon dioxide tension at 30 ± 5 mmHg. Anesthesia was maintained with 2.0% halothane in oxygen. End-tidal halothane concentrations were monitored with an infrared multiple gas analyzer (PPG Biomedical Systems, Lenexa, KS) after its calibration with known standards.

Using a modified Seldinger technique, an 8-French percutaneous sheath introducer was inserted into an external jugular vein. Arterial access for blood sampling by roller pump or syringe was achieved by inserting a 16-gauge (Angiocath; Becton Dickinson, Sandy, UT) catheter percutaneously into the femoral artery; this also allowed systemic arterial blood pressure to be monitored *via* a solid-state pressure transducer (Baxter-Edwards, Irvine, CA). A flow-directed thermal dilution pulmonary artery catheter (Baxter-Edwards 93A-140-7F, with a 20-cm proximal port) was inserted through the sheath introducer, positioned with the tip in the pulmonary artery, and secured for determination of pulmonary arterial pressure and thermal dilution cardiac output (CO), and was placed to facilitate right atrial administration of the ketamine and physiologic markers. The side arm of the sheath introducer was used for maintenance fluid administration and the readministration of autologous blood. Hydration was maintained throughout the study.

| Table 1. Subject Characteristics and Global Pharmacokinetic Parameters (N = 5) |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Weight (kg) | Hct (%) | Cardiac Output* (l/min) | VSS (l/kg) | ClE (ml min⁻¹·kg⁻¹) | VSS (l/kg) | ClE (ml min⁻¹·kg⁻¹) | VSS (l/kg) | S(+) ClE (ml min⁻¹·kg⁻¹) | R(−) ClE (ml min⁻¹·kg⁻¹) |
| Mean (SD) | 30.2 (2.4) | 37.6 (2.4) | 3.44 (1.82) | 0.089 (0.005) | 10.14 (2.80) | 0.73 (0.08) | 2.62 (0.49) | 2.11 (0.72) | 29.9 (4.5) | 22.2 (1.7) |

Antipyrine and ketamine $V_{SS}$ and ClE are here presented on the basis of plasma concentrations. $V_{SS}$ is the sum of all compartmental volumes (volume of distribution at steady-state); ClE is the elimination clearance; Hct is hematocrit.

* Determined by thermal dilution.
by an infusion of 0.9% saline at a rate of 5–10 ml·kg⁻¹·h⁻¹ to maintain a constant pulmonary artery diastolic pressure (± 2 mmHg).

After anesthetic induction and catheter placement, 150 ml whole blood was removed from the dog through the arterial catheter and anticoagulated with 1,000 U heparin. This blood was immediately replaced with 600 ml saline solution, 0.9%, administered intravenously over 30 min. During the first 10 min of the study (from time \( t = 0 \text{ min} \) to \( t = 10 \text{ min} \)), this autologous blood was reinfused intravenously to replace the blood removed during this period of frequent blood sampling.

The study was not begun until the dog was hemodynamically stable. This was defined as less than 10% variation of CO and pulmonary and systemic arterial blood pressures over a 30-min period when heart rate and CO was determined at least every 15 min. The dogs were hemodynamically stable approximately 1 h after removal of the blood.

At the onset of the study (time \( t = 0 \text{ min} \)), ICG (Hynson, Westcott, and Dunning, Baltimore, MD), 5 mg in 1 ml diluent, antipyrine (Sigma, St. Louis, MO), 25 mg in 1 ml of diluent, and racemic ketamine (Parke Davis, Morris Plains, NJ), 100 mg in 1 ml, were placed sequentially in a 76-cm intravenous tubing (4.25 ml priming volume). The 3-ml drug volume was flushed through the proximal pulmonary artery catheter port within 4 s using 10 ml dextrose in water, 5%, allowing the simultaneous determination of dye and thermal dilution CO. Arterial blood samples were collected every 0.05 min for the first minute and every 0.1 min for the next minute using a computer-controlled roller pump (Cole-Parmer, Chicago, IL), set at a withdrawal rate of 1 ml/s, and a chromatography fraction collector (Model 203; Gilson, Middleton, WI). Subsequently, 30, 3-ml arterial blood samples were drawn manually at 0.5 min intervals to 4 min, at 5 and 6 min, every 2 min to 20 min, at 25 and 30 min, every 10 min to 60 min, every 15 min to 120 min, and every 30 min to 360 min.

Analytical Methods

Plasma ICG concentrations of all samples obtained up to 20 min were measured on the study day by the high-performance liquid chromatography (HPLC) technique of Grasela et al., as modified in our laboratory to provide sensitivity of 0.2–20.00 \( \mu \text{g/ml} \) with coefficients of variation of 5% or less. Plasma antipyrine concentrations were measured in all samples using a modification of a high-performance liquid chromatography technique developed in our laboratory. The antipyrine method is linear for plasma concentrations of 0.10–10.00 \( \mu \text{g/ml} \), with coefficients of variation of 5% or less.

Plasma \( [S(-)] \) and \( [R(+)] \) ketamine enantiomer concentrations were measured in all samples using a modification of the stereoselective high-performance liquid chromatography technique developed by Geisslinger et al. Plasma samples were extracted in duplicate with C18 Empore high-performance extraction disk cartridges (3M Filtration Products, St. Paul, MN) using propylene as the internal standard. Samples were eluted isocratically at 1.0 ml/min from acid glycoprotein (AGP) guard and analytical columns (Advanced Separation Technologies, Inc., Whippany, NJ) using a mobile phase consisting of pH 6.98, 0.02 M phosphate buffer, and isopropanol alcohol in a 97.5:2.5 ratio. Absorbance was monitored at 214 nm. The stereoselective ketamine assay is linear from concentrations of 0.05 to 10.00 \( \mu \text{g/ml} \), with coefficients of variation of 10% or less.

Plasma ICG concentrations were converted to blood concentrations by multiplying them by one minus the hematocrit because ICG does not partition into erythrocytes. To interpret intercompartmental clearances in relation to blood flow, plasma antipyrine and ketamine concentrations were corrected for partitioning into the erythrocyte by calculating the apparent dose of the respective drug. The ratio of the actual dose to the apparent dose is then used as an \textit{in vivo} estimate of erythrocyte partitioning to convert plasma concentrations to blood concentrations. Because the central blood flow of the antipyrine and ketamine models was constrained to that of ICG (i.e., CO), the apparent antipyrine and ketamine doses were estimated using blood ICG and plasma antipyrine or ketamine stereoisomer concentrations, respectively, obtained before the first evidence of recirculation according to the following relationship:

\[
\text{dose}_{\text{antipyrine or ketamine stereoisomer}} = \frac{\text{dose}_{\text{ICG}}/\text{AUC}_{\text{ICG}}}{\text{AUC}_{\text{antipyrine or ketamine stereoisomer}}}
\]

Data Analysis. A delay (central volume \( V_C \) and non-distributive volume \( V_{\text{ND}} \); fig. 1) is a mathematical description of the distribution of drug transit times that can be described by the mean transit time (MTT). The apparent volume of a delay element can be determined as the product of the flow through the delay and its MTT. The delay elements of the SAAM II kinetics analysis software (SAAM Institute, Seattle, WA) are composed of a linear chain (or tanks-in-series) of \( n \) identical compart-
Fig. 1. The general model for the recirculatory pharmacokinetics of indocyanine green (ICG), antipyrine, and ketamine. The central circulation of all three drugs receives all of the cardiac output (CO) defined by the delay elements (Vc). The delay elements are represented generically by rectangles surrounding four compartments, although the actual number of compartments necessary varied between 2 and 30 for any particular delay. The pulmonary tissue volume (VPr) is a subset of Vc, and can be calculated for antipyrine and ketamine by subtracting the VC of ICG from the VC of antipyrine or ketamine, respectively. Beyond the central circulation, the CO distributes to numerous circulatory and tissue pathways that lump, on the basis of their blood volume to blood flow ratios or tissue volume to distribution clearance ratios (mean transit times), into fast (ClND-F, VND-F) and slow (ClND-S, VND-S) peripheral blood circuits (ICG) or nondistributive peripheral blood circuits (ICG) or nondistributive peripheral pathways (ketamine and antipyrine) and fast (ClEF-F, VEF-F) and slow (ClEF-S, VEFS-S) tissue volume groups. ICG, which distributes only within the intravascular space, does not have fast and slow tissue volumes. The nondistributive flow for ICG was resolved into fast and slow components (not shown); antipyrine and ketamine do not have an identifiable second nondistributive peripheral circuit. The elimination clearance (ClE) of ICG and antipyrine are modeled from the arterial sampling site without being associated with any particular peripheral circuit, whereas the ClE of ketamine is modeled from VPr, (model 4, see text).
distribution functions, were incorporated in a full recirculatory model (fig. 1), including lumped parallel fast and slow peripheral intravascular circuits and ClE using SAAM II. The antipyrine and ketamine pulmonary tissue volumes (VT-P) are the difference between their respective apparent central volumes (MTTantipyrine or ketamine · CO) and the central intravascular volume determined by ICG (MTTICG · CO).

Peripheral drug distribution can be lumped into identifiable volumes and clearances: a fast nondistributive peripheral pathway (VND,F and ClND,F); a slow nondistributive peripheral pathway (VND,S and ClND,S); rapidly (fast) equilibrating tissues (VT,F and ClT,F); and slowly equilibrating tissues (VT,S and ClT,S). The nondistributive peripheral pathways (delay elements) represent intravascular circuits in the ICG model.10,19 The single nondistributive peripheral pathway in the antipyrine and ketamine models, determined by the respective recirculation peaks, represents blood flow that quickly returns the lipophilic drugs to the central circulation after minimal tissue distribution (i.e., a pharmacokinetic shunt).10,11 In the antipyrine and ketamine models, the parallel rapidly and slowly equilibrating tissues are the fast and slow compartments of traditional three-compartment pharmacokinetic models; therefore, the central circulation and nondistributive peripheral pathways are detailed representations of the ideal central volume of the three-compartment model.20 Because of the direct correspondence between the recirculatory model and three-compartment models, ClE was modeled from the arterial (sampling) compartment to enable comparison of these results with previous ones.

As noted previously, preliminary analyses of the first-pass S(+) and R(−)-ketamine arterial plasma concentration data indicated that there were no differences in pulmonary tissue distribution for these enantiomers, suggesting that their distribution to other tissues may also be indistinguishable from one another; i.e., intercompartmental clearances and volumes of distribution are the same for each enantiomer. To test this hypothesis, ketamine data were fit to models in which the number of parameters describing peripheral drug distribution were successively decreased. To determine statistically which was the simplest model, the Akaike information criterion (AIC),29 the mean absolute performance error (MAPE) and visual inspection of the plots of the ratios of the measured to the predicted drug concentrations versus time relations were used as bases for model selection.

\[
\text{MAPE} = \frac{1}{n} \sum_{i=1}^{n} \text{APE}_i
\]

\[
\text{APE} = \left| \frac{C_{\text{pred}} - C_{\text{meas}}}{C_{\text{pred}}} \right| \cdot 100
\]

For model 1, ClE, intercompartmental clearances (ClND, ClT,F, and ClT,S), and distribution volumes (VT,F, VT,S, and VT,P) for the two enantiomers were independent of one another (12 parameters). For model 2, ClE and the distribution volumes remained independent, but all of the intercompartmental clearances were the same for the enantiomers, except ClND, which was allowed to vary reciprocally with the different ClSs because both of these clearances are nondistributive and their sum was assumed to be the same for both enantiomers (10 parameters). For model 3, ClE, ClND, and VT,P were allowed to vary, but tissue volumes and their respective intercompartmental clearances were set to be equal (eight parameters).

Other investigators reported differences in the tissue distribution models for ketamine enantiomers.4,5 The apparent differences in tissue distribution of the ketamine enantiomers may be derived from an artifact of modeling the different ClSs of the stereoisomers from VC. Modeling ClE from a peripheral compartment rather than VC will affect the estimate of the volume of the peripheral compartment from which ClE is modeled, and thus the steady state volume of distribution (VSS).26 Normally, there is no information in typical input–output pharmacokinetic data to select among elimination models,27 but the simultaneous modeling of enantiomers with different ClSs and similar tissue distribution should enable optimal model selection. Therefore, a fourth model was considered (model 4), with elimination modeled from VT,F instead of VC and only ClE was allowed to vary for the two enantiomers (six parameters). VT,F was chosen because this compartment includes the major portion of the splanchnic circulation and tissue.10,28

Results

Blood ICG, antipyrine, and ketamine enantiomer concentration versus time relations were well-characterized by the models from the moment of drug administration (time t = 0; figs. 2–4). The arterial blood drug concentration versus time relations were always characterized by a brief delay between the moment of drug administration and their appearance at the arterial blood sampling site. The one-sample runs test indicated that there

Anesthesiology, V 91, No 6, Dec 1999
were no systematic deviations of the observed data from the calculated values.

The recirculatory pharmacokinetic model parameters of ICG are presented in Table 2. A little more than one third of the blood volume (0.95 of 2.68 l) was in the central circuits. The fast peripheral circuit contained 0.20 l, which is an average of 11.7% of the peripheral blood volume (1.73 l) and 7.7% of the total blood volume, and received 48.3% (1.77 l/min) of CO (3.58 l/min, as determined by dye dilution, Table 2). The slow circuit contained the majority of the peripheral blood volume (88.3%, 1.53 l, which is 56.9% of the total blood volume) but received only 41.9% (1.49 l/min) of CO. ICG ClE represented only 9.9% (0.30 l/min) of CO.

Blood volume (1.73 l) and 7.7% of the total blood volume, and received 48.3% (1.77 l/min) of CO (3.58 l/min, as determined by dye dilution, Table 2). The slow circuit contained the majority of the peripheral blood volume (88.3%, 1.53 l, which is 56.9% of the total blood volume) but received only 41.9% (1.49 l/min) of CO. ICG ClE represented only 9.9% (0.30 l/min) of CO.

The recirculatory antipyrine pharmacokinetic model (Table 2) always contained a small but readily identifiable pulmonary tissue volume, which averaged 0.16 l or 0.61% of the total antipyrine distribution volume (26.6 l). The rapidly and slowly equilibrating peripheral antipyrine tissue volumes contained an average of 19.0% (5.02 l) and 75.5% (20.09 l) of the total antipyrine distribution volume, respectively, and fast and slow distribution clearances averaged 44.0% (1.64 l/min) and 21.5% (0.82 l/min) of CO, respectively. Antipyrine ClE accounted for only 2.9% (0.10 l/min) of CO. The balance of CO in the antipyrine model (31.5%, 1.02 l/min) was assigned to the nondistributive peripheral pathway, which represented only 1.3% (0.33 l) of the total antipyrine distribution volume.

The AIC for the various recirculatory ketamine pharmacokinetic models in Table 3 shows that there was an improvement in AIC (lowering) from model 1 to model 3 in which the number of independent param-
KETAMINE DISPOSITION IN THE DOG

Table 2. Pharmacokinetic Variables for Recirculatory Indocyanine Green (ICG), Antipyrine, and Ketamine Pharmacokinetics [Mean (SD)] (N = 5)

<table>
<thead>
<tr>
<th>Marker</th>
<th>VCs</th>
<th>VT-P</th>
<th>VND-F</th>
<th>VND-S</th>
<th>Vrs</th>
<th>Vss</th>
<th>ClND-F</th>
<th>ClND-S</th>
<th>ClT-F</th>
<th>ClT-S</th>
<th>Cl-E</th>
<th>S(+)</th>
<th>R(-)</th>
<th>ΣCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICG</td>
<td>0.95</td>
<td>0.20</td>
<td>1.53</td>
<td></td>
<td>2.68</td>
<td></td>
<td>1.77</td>
<td>1.49</td>
<td></td>
<td></td>
<td>0.30</td>
<td></td>
<td></td>
<td>3.58</td>
</tr>
<tr>
<td>Antipyrine</td>
<td>1.11</td>
<td>0.16</td>
<td>0.33</td>
<td>5.02</td>
<td>20.1</td>
<td>26.6</td>
<td>1.02</td>
<td>1.64</td>
<td>0.82</td>
<td></td>
<td>0.10</td>
<td></td>
<td>3.58</td>
<td></td>
</tr>
<tr>
<td>Ketamine (model 4)</td>
<td>1.26</td>
<td>0.31</td>
<td>0.48</td>
<td>6.17</td>
<td>38.5</td>
<td>46.4</td>
<td>1.17</td>
<td>1.54</td>
<td>0.86</td>
<td>0.66</td>
<td>0.49</td>
<td>3.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
<td>(0.08)</td>
<td>(0.10)</td>
<td>(1.29)</td>
<td>(3.54)</td>
<td>(3.84)</td>
<td>(0.27)</td>
<td>(0.89)</td>
<td>(0.50)</td>
<td>(0.03)</td>
<td>(1.59)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The volumes (V) of the two parallel central (C) circuits [including the pulmonary tissue (T-P)], the rapidly equilibrating (fast) nondistributive (ND-F) and slowly equilibrating nondistributive (ND-S) circuits, and the rapidly equilibrating (fast) (T-F) and slowly equilibrating (T-S) tissues. The volume of distribution at steady-state (Vss) equals the sum of all volumes except the antipyrine and ketamine pulmonary volumes, which are represented in their VCs because antipyrine and ketamine VT-P are equal to the difference between the antipyrine and ketamine Vfs and the VC described by ICG, respectively.

† The clearances (Cl) of the rapidly (fast) equilibrating nondistributive (ND-F) and slowly equilibrating nondistributive (ND-S) intravascular circuits, and the rapidly equilibrating (fast) (T-F) and slowly equilibrating (T-S) tissues, elimination clearance (ClE), and the sum of all clearances (ΣCl), which equals the ICG (dye dilution) cardiac output determined at the moment of marker injection. ΣCl in the ketamine peripheral elimination model includes only the sum of intercompartmental clearances because ClE in this model is already represented in the clearance (ClT-F) to the compartment from which ClE is modeled (VT-F).

The recirculatory ketamine pharmacokinetic model (table 2) also contained a pulmonary tissue volume, which averaged 0.31 l and was 0.75% of the total ketamine distribution volume (46.4 l). The rapidly (6.17 l) and slowly (38.48 l) equilibrating peripheral ketamine tissue volumes contained an average of 13.9 and 82.0% of the total ketamine distribution volume (46.4 l), respectively. Fast (1.54 l/min) and slow (0.86 l/min) distribution clearances averaged 44.3 and 21.9% of CO, respectively. Ketamine ClE was greater for the S(+)enantiomer (0.66 l/min) than for the R(−)-enantiomer.

Table 3. Measures of Model Selection (AIC†) and Goodness of Fit (MAPE) for Models of Ketamine Stereoisomer Disposition with Central Elimination or Elimination Modeled from a Peripheral Compartment (Vrs)† (N = 5)

<table>
<thead>
<tr>
<th>Elimination</th>
<th>Central Elimination</th>
<th>Peripheral Elimination (Model 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td>Mean</td>
<td>−0.77</td>
<td>−0.80</td>
</tr>
</tbody>
</table>

* A lower (i.e., more negative) score connotes a more statistically justified model.

† Model 1: Distribution volumes, intercompartmental, and elimination clearances of the two enantiomers were modeled independently. Model 2: Intercompartmental clearances except ClND of the two enantiomers were the same; distribution volumes, ClE, and ClND were modeled independently for each enantiomer. Model 3: Distribution volumes and intercompartmental clearances except ClND of the two enantiomers were the same; ClE and ClND were modeled independently for each enantiomer. Model 4: Distribution volumes and intercompartmental clearances of the two enantiomers were the same; ClE was modeled from Vrs independently for each enantiomer.

Anesthesiology, V 91, No 6, Dec 1999
The pulmonary uptake of ketamine is quite small compared with fentanyl (60 times tissue water), lidocaine (9 times tissue water) or sufentanil (84 times tissue water). It is closer to that of alfentanil (2.4 times tissue water) or diazepam (approximately 5 times tissue water). Thus, interindividual differences in the pulmonary uptake of ketamine would not be expected to have much of an effect on onset of action.

The lack of stereoisomeric effect for the distribution of ketamine in pulmonary tissue suggests that the distribution of the $S(+)$ and $R(-)$-enantiomers in other tissues might also be identical. Because the pharmacokinetics of tissue distribution are described by intercompartmental clearance ($C_{\text{T-F}}$ and $C_{\text{T-S}}$) and volume of distribution ($V_{\text{T-F}}$ and $V_{\text{T-S}}$), we systematically explored the modeling implications (i.e., goodness of fit vs. number of adjustable parameters) of treating the enantiomers as individual drugs or as identical drugs with respect to these parameters. If these parameters can be made to be common to the two enantiomers without substantially affecting goodness of fit, the AIC should become progressively smaller as more distribution parameters are made common. Table 3 shows that in the case of a central elimination model this is true if $C_{\text{T-F}}$ and $C_{\text{T-S}}$ are made common, but does not hold up if $V_{\text{T-F}}$ and $V_{\text{T-S}}$ are also made common. Because the $S(+)$-enantiomer has the greater $C_{\text{E}}$, we would expect its peripheral distribution volume to be less than that of the $R(-)$-enantiomer during this condition. With $C_{\text{E}}$ modeled from $V_{\text{T-F}}$, we obtained similar fits with fewer adjustable parameters and an improved AIC (fig. 5 and table 3); that is, there was a consistent improvement in the AIC when both enantiomers were “forced” to share the same $V_{\text{T-F}}$, $V_{\text{T-S}}$, $C_{\text{T-F}}$, and $C_{\text{T-S}}$. Thus, it is reasonable to conclude that there are no significant differences in the pharmacokinetics of tissue distribution between the two enantiomers of ketamine. This exercise provides evidence that the choice of the site from which $C_{\text{E}}$ is modeled (i.e., central or peripheral) will affect the peripheral distribution volume and thus $V_{\text{SS}}$.

Using a central elimination model with all parameters independent for the two enantiomers (model 1) resulted in a $V_{\text{SS}}$ for $R(-)$-ketamine of 55.8 l, compared with 42.9 l for $S(+)$-ketamine. This is in contrast to the peripheral elimination model (model 4) in which the $V_{\text{SS}}$ for either enantiomer was 46.4 l. Using model 1, the $C_{\text{E}}$ were 0.49 and 0.66 l/min, respectively, the same as...
reported for model 4 in table 2 because elimination clearance is independent of the model used.

The ketamine $V_{RS}$ (model 4) in these five dogs averaged 2.11 l/kg when referenced to plasma and compared with 2.5 l/kg reported by Kaka and Hayton and with 1.37 l/kg reported by Schwieger et al. The total (i.e., racemic) ketamine $Cl_E$ values reported in these studies were 32.2 and 18.1 ml·min$^{-1}$·kg$^{-1}$, respectively, compared with 22.2 ml·min$^{-1}$·kg$^{-1}$ for the $R(-)$-ketamine (table 1) in the current study.

There was a marked difference in $Cl_E$ for the two enantiomers of ketamine. On average, the $Cl_E$ was 35% greater for the $S(+)$-enantiomer compared with the $R(-)$-enantiomer and was greater in all five dogs (table 2). This is consistent with the results of White et al. and Geisslinger et al. in humans (15 and 22% greater, respectively) and previous findings in rodents. In human liver microsomes, Kharasch and Labroo showed that the rate of $N$-demethylation was greater for $S(+)$-ketamine than for the $R(-)$-enantiomer.

The ICG and antipyrine kinetics compare very well with those from previous studies during similar conditions, suggesting that the 100-mg dose of ketamine had little if any effect on the factors governing the pharmacokinetics of these markers and drugs. Only in dog 2 was there a brief period of systematically poor fitting. This incident corresponds to the large positive deflection just before 1 min in the measure to predicted drug concentration ratio versus time plots (fig. 5). This may be the result of a brief hemodynamic perturbation in this dog caused by the ketamine bolus. Because of the need for near-continuous arterial sampling, no hemodynamic measurements could be made during this period. However, at $t = 10$ min, all such values were within 10% of baseline.

Although antipyrine and ketamine were modeled independently, their mean intercompartmental clearances ($Cl_{TF}$ and $Cl_{TS}$) and the nondistributive intercompartmental clearances ($Cl_{ND}$) were remarkably similar. A linear regression for these parameters is shown in figure 6 and shows that the correlations were highly significant for $Cl_{TF}$ and $Cl_{TS}$; the correlation for $Cl_{ND}$ was not significant because of an outlying datum. This finding suggests that a further model-reduction step, whereby the enantiomers of ketamine share common distribution clearance terms with antipyrine, could be made. It also indicates that factors determining the transcapillary exchange of these two compounds are similar. Antipyrine has been used as a marker of perfusion-limited tissue distribution in many tissues because it is minimally plasma protein bound, freely diffuses across lipid membranes, and equilibrates very rapidly with tissues. It would appear that the transcapillary exchange of ketamine is similar to that of antipyrine, despite ketamine’s more extensive plasma protein binding (53%), indicating that the protein binding of ketamine does not influence its transcapillary exchange.

We described the pulmonary uptake and recirculatory...
and the ClT-S regression probably reflects the inclusion of ClE in the estimates of these parameters for ketamine but not for antipyrine, as a result of modeling elimination from the peripheral and central compartments, respectively.

The pharmacokinetics of the individual stereoisomers of ketamine based on a multiple-indicator dilution technique with frequent arterial blood sample collection. Although the S(+)-ketamine enantiomer had a ClE that averaged 35% more than the R(-)-enantiomer, we found no difference in the pulmonary uptake of these two stereoisomers. Our conclusion that the peripheral distribution kinetics of the ketamine stereoisomers do not differ is predicated on the assumption that, if the pulmonary uptake of ketamine is not stereospecific, peripheral tissue distribution is unlikely to be stereospecific. Modeling the two different stereoisomer ClEs from VT-F rather than from VC yielded a model of ketamine stereoisomer tissue distribution that was consistent with this assumption.

References

12. Wood M: Drug distribution: Less passive, more active (editorial)? ANESTHESIOLOGY 1997; 87:1274–6
22. Krejcie TC, Jacquez JA, Avram MJ, Niemann CU, Shanks CA,


