THORACIC paravertebral block has been shown to be effective for surgical anesthesia when the afferent pain input is predominantly unilateral from the chest. We describe a patient scheduled for right thoracotomy with combined paravertebral-general anesthesia who had abnormal responses to local anesthetic injection administered via the paravertebral catheter. The catheter subsequently was found to be in the subdural space. To our knowledge, this is the first report to be published in the anesthesia literature of a subdural blockade occurring during intended cannulation to paravertebral space.

Case Report

A 49-yr-old woman with a lung bronchogenic carcinoma was scheduled for a medial lobectomy. Her medical history included asthma treated with inhaled bronchodilators; there was no history of medication allergies.

No premedication was given. In the operating room, a 16-gauge intravenous access was obtained and the usual monitoring (electrocardiography, pulse oximetry, and noninvasive blood pressure monitoring) was initiated without any remarkable findings. Five hundred milliliters of Ringer’s lactate solution was infused, and induction of anesthesia was initiated with 120 mg propofol, 150 μg fentanyl, and 50 mg rocuronium. A double-lumen tube was then inserted (Robertswaith, left side, no. 39). Anesthesia was maintained with a 0.8–1.2% concentration of sevoflurane and a rocuronium perfusion (0.6 mg · kg⁻¹ · h⁻¹), and her lungs were ventilated with a fraction of inspired oxygen of 1.

After induction of anesthesia, the patient was placed on her left side in order to perform a right paravertebral block with cannulation for management of the perioperative pain (surgery and postoperative pain). An 18-gauge Tuohy needle (Perisafe® Plus; Becton-Dickinson, Warwickshire, Switzerland) was inserted 2.5 cm lateral to the aspect of the spinous process of T6 and advanced perpendicular to the skin in all planes. After encountering the costotransverse ligament, we advanced the needle approximately 1.5 cm further until there was loss of resistance to the injection air.

After negative aspiration, 3 ml of the epidural catheter (closed-end round catheter, 20 gauge) was inserted into the paravertebral space. The catheter was then checked with the negative aspiration test, and 3 ml bupivacaine, 0.5%, with epinephrine (1:200,000) was injected. There were no hemodynamic changes during the next 10 min, and another 1.2 ml of bupivacaine, 0.5%, without epinephrine was injected. Fifteen minutes after this second bolus, the patient’s blood pressure decreased substantially (to 70/40 mmHg), as did the heart rate (48 beats/min). There were no wide variations on the arterial pressure curve area related to mechanical ventilation. All lung auscultation findings, airway pressures, and pressure-volume curves were absolutely normal during the period between intubation and the beginning of one-lung ventilation.

Sevoflurane administration was discontinued, followed by the rapid infusion of 500 ml of a colloid and the administration of 10 mg ephedrine intravenously. The dosing of ephedrine was repeated twice but did not increase the systolic blood pressure to higher than 100 mmHg, so a 0.1-μg · kg⁻¹ · min⁻¹ infusion of norepinephrine was initiated, with good results. During the next 60 min the norepinephrine infusion rate was progressively reduced, and the infusion was finally stopped due to hemodynamic stabilization. The thoracotomy was started in this left lateral position, and sevoflurane administration was reinitiated then. The heart rate did not change for the rest of the surgery (180 min total). No other analgesic administration was needed during the rest of the surgery until the thoracic wall closure, when a slight increase in the heart rate and blood pressure suggested some pain, and 100 μg fentanyl was given intravenously.

At the end of surgery (40 min after this fentanyl administration and 10 min after the end of sevoflurane administration) the patient was awake and helpful, and the ventilation pattern was good, so she was extubated. She was moved to the intensive care unit. The patient did not have any sensory or motor blockade. Once the patient had been monitored and no hemodynamic, ventilatory, or any other changes were noted, we decided to check the placement of the catheter, with the patient’s permission. After a negative aspiration test, 15 ml of the contrast medium lopamiro-300 (Iopamidol, 300 mg/ml; Rovi, Madrid, Spain) was injected through the catheter with the patient seated. Two chest radiographs were obtained: lateral (fig. 1) and posterior-anterior. The lateral view (fig. 1) showed the characteristic “railroad tracks” from the lumbar region to the cervical region. Furthermore, computed tomography thoracic–abdominal imaging (fig. 2) was performed to confirm the contrast extension. The contrast circumferentially outlined the thecal sac (subdural spread sign).

The catheter was removed immediately. A postoperative intravenous analgesia infusion (meperidine and ketorolac) was initiated and was continued for the next several days in the wards. The patient was discharged from the wards 7 days later, with no other incidents during her hospitalization.

Discussion

Subdural cannulation has been described as a complication of intended anesthetic blocks (epidural, dural, and even interscalene block), but there are no published reports of a subdural block with an intended paravertebral block. However, some cases of total spinal block1 have been described, and a postpuncture headache has been reported as a possible complication of paravertebral block.2

The subdural space is a potential space located between the dura mater and the arachnoid mater. The dura mater extends laterally some “cuffs” along the nerve
roots at the spinal level, which are in contact with the spinal ganglion. Sometimes these dural cuffs are prolonged to the paravertebral space as a normal anatomic variation. Abnormal variations (meningocele, perineural cysts) are possible and can be discovered in image studies with contrast medium. The radiologic studies of our patient could not completely eliminate the possible existence of these abnormal anatomic variations that would have facilitated the subdural block. Another possibility could be that the needle advancement was anterior-medial instead of directly anterior, which would greatly increase the chances of a dural cuff injury and/or entry in the subdural space.

Lubenow et al. described the two major and the three minor clinical criteria for the diagnosis of subdural block. Our patient met one of the major criteria (negative aspiration), and the other—unsuspected widespread sensory block—was probably present but masked by the simultaneous general anesthesia. The minor criteria included delayed onset and massive sympatholysis (hypotension and possibly pupil dilatation), which was out of proportion to the dose of local anesthetic agent injected. The third minor criterion described by Lubenow et al., which may have been present but masked by the general anesthesia, was variable motor block. This last minor criterion is an issue with intended epidural anesthesia but is not a consideration with intended thoracic paravertebral block.

The contrast medium injected through the paraspinal catheter surrounded the spinal cord except for the site of the spinal ganglia, a circumstance that was related to the extraarachnoid location of the contrast medium, but it was impossible to determine where the tip of the catheter was. The extension of the contrast medium along several vertebral bodies—near the complete dorsal and lumbar spine, as was shown in the lateral view of the chest radiograph—points out the contrast in the subdural space; if it had been in the epidural space, the contrast would have been limited to a smaller extension.
The occurrence of hypotension with paravertebral blocks usually is related to hypovolemia by unilateral vasodilation, but the paravertebral volume injected in this patient was too small (15 ml) to produce an extended sympathetic block, which could have explained the profound hypotension. Recently, Saito et al. showed an increase in blood pressure when 22 ml lidocaine was injected into the paravertebral space. In our patient, the extreme hypotension was the clue that made us suspect a block other than a paravertebral one.

Four different blocks had to be considered: thoracic paravertebral block, thoracic epidural block, subarachnoid block, and subdural block. Clinical manifestations of a subdural block at the thoracic level range from hypesthesia of the affected dermatomes to full respiratory arrest with severe hypotension or cardiac arrest. Definitive diagnosis requires radiologic studies with contrast medium injected through the catheter. The low incidence of severe complications associated with paravertebral blocks makes anesthesiologists confident about this technique. A good knowledge of the anatomy of the paravertebral space is important to understanding possible severe complications. The number of paravertebral catheters being placed for management of postoperative pain is great, but the incidence of complications, such as malpositioning of catheters, is unknown. Abnormal behavior of local anesthetics administered in a paravertebral catheter should lead one to suspect a subdural block; its early detection can prevent serious consequences. The removal of these catheters is necessary due to the unpredictable behavior of anesthetics in the subdural space.

References


Somatostatin Does Not Prevent Serotonin Release and Flushing during Chemoembolization of Carcinoid Liver Metastases

Christian Zimmer, M.D.,* Peter Kienbaum, M.D.,† Richard Wiesemes, M.D.,‡ Jürgen Peters, M.D.§

CARCINOID tumors are rare neoplasms of the neuroendocrine amine precursor uptake and decarboxylation cell system, with an incidence of 1 to 2 cases per 100,000.1 They originate from different embryonic divisions of the gut, most commonly the appendix and small bowel and rarely from the rectum or lung.2 These tumors usually produce a variety of hormones and biogenic amines, such as serotonin (5-HT), but also poten-

tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also poten-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also poten-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also poten-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-
tively produce histamine, substance P, prostaglandins, or biogenic amines, such as serotonin (5-HT), but also potent-

primary carcinoid tumors. The heart may be affected by tricuspid insufficiency, endocardial fibrosis, or pulmonary valve stenosis.3 Patients with nonresectable liver metastases may benefit from chemoembolization, which may achieve good symptom control and improved quality of life.4

However, tumor manipulation may, by massive release of mediators, trigger an acute, potentially lethal carcinoid crisis. According to a standard textbook of anesthesia, perioperative administration of somatostatin is the “therapy of choice for the management of carcinoid symptoms and crisis,” because somatostatin is a “powerful inhibitor of release of peptides.”5

However, this recommendation, although widely considered a clinical standard, is based on case reports and a small series of patients.8 In a recently published retrospective analysis of 119 patients undergoing abdominal surgery for metastatic carcinoid tumors between 1983 and 1996, the authors stated that without intraoperative octreotide treatment, 8 of 73 patients developed complications compared with 0 of 45 patients treated with octreotide intraoperatively.7 Accordingly, we examined the effectiveness of prophylactic somatostatin infusion on suppressing 5-HT concentrations during three succes-

"
sive chemoembolizations performed in the same patient with carcinoid syndrome during monitored anesthesia care.

Case Report

A 48-yr-old woman (163 cm, 54 kg) with carcinoid syndrome due to nonresectable liver metastases (two bulky metastases in the right lobe and diffuse small metastases in the left lobe) from an ileum carcinoid resected 2 yr previously was scheduled for a series of chemoembolizations via the hepatic artery during monitored anesthesia care. With indium-111-octreotide scintigraphy (150 MBq), bulky nuclide enhancements were detectable in the right liver lobe and in the central liver, demonstrating an octreotide receptor–positive carcinoid tumor.

Except for flushing of the face three or four times daily, the patient was free of symptoms for 1.5 yr after her first operation. The symptoms worsened (flushing and diarrhea) 6 months ago, and the serum 5-HT concentration (1,430 μg/l; reference range, 110–330 μg/l) and urinary excretion of 5-hydroxyindole acetic acid (265 mg/24 h; reference range, 2–9 mg/day) were markedly increased. Therefore, octreotide acetate treatment was started and diminished the tumor-related symptoms, especially diarrhea. However, to achieve better and longer-lasting symptom control, chemoembolization of the bulky metastases was planned.

On the day of the preanesthetic examination the patient presented in slightly reduced physical condition and reported a history of intermittent flushing of the face, hypotension during flushing, and diarrhea. Findings of chest radiography, echocardiography, and laboratory tests were normal except for an increased serum 5-HT concentration (585 μg/l), an increased 5-hydroxyindole acetic acid urinary excretion (83 mg/day), and a slight increase in γ-glutamyl transferase (26 U/l; reference range, 4–18 U/l). The patient’s medication for symptom control (200 μg octreotide acetate three times daily subcutaneously) was continued until the morning of chemoembolization.

For pressure measurements, arterial and central venous catheters were inserted via the right internal jugular vein and left radial artery during local anesthesia before each chemoembolization, and the electrocardiogram (lead II) was monitored. Central venous blood was withdrawn for measurements of 5-HT concentrations in both whole blood and plasma. For measurements in whole blood, blood was withdrawn in an EDTA tube, immediately cooled in crushed ice, and blood and plasma. For measurements in whole blood, blood was withdrawn for measurements of 5-HT concentrations in whole blood 6 weeks later) were much more stable than in the first procedure, 5-HT concentrations in whole blood were also much increased at baseline and varied in a similar range (982–1,250 μg/l). Again, plasma 5-HT concentrations varied widely (85–1,072 μg/l). Although vasoconstrictor therapy was not necessary, ketanserin was used to control hypertensive episodes. Again, no apparent correlation was seen between 5-HT plasma concentrations and blood pressure alterations.

Before the third chemoembolization 4 months later, the patient’s condition had much improved, octreotide had been withdrawn, flushing episodes were rare, and the diarrhea had stopped. Embolization of a small metastasis in the left liver lobe was hemodynamically uneventful. Initial 5-HT concentrations in whole blood, however, were even higher (1,352–1,640 μg/l) than at the previous baseline before interventions, but they did not change much during the procedure. Although 5-HT concentrations in plasma increased immediately from 240 to 330 μg/l after the start of embolization to 677 and 558 μg/l, no hypotension or bronchospasm occurred, despite the nausea reported by the patient.

Discussion

Since patients with carcinoid syndrome undergoing tumor manipulation are prone to develop carcinoid crisis, avoidance of mediator release is an important goal. Somatostatin and its longer-acting analog, octreotide, are commonly used for symptom control in patients with carcinoid syndrome.8 Perioperative administration of somatostatin or octreotide is recommended as intravenous prophylaxis for carcinoid crisis, either at a dosage of 100 μg/h or as a 50-μg single dose, in addition to preoperative administration of corticosteroids and antihistaminic drugs.5,8 Although the cellular mechanism of the action of somatostatin is still unclear, five subtypes of somatostatin G-protein-coupled receptors (sstr 1–5) have been identified. Most midgut carcinoid tumors express at least one somatostatin receptor subtype, and many express all five subtypes.9 Octreotide may bind to any of the five subtypes, but there is evidence that its action regarding the prevention of mediator release is strongly associated with sstr-2.

Among 25 carcinoid patients, all 7 patients with a positive octreotide scan but without expression of sstr-2 mRNA failed to respond to octreotide treatment.10 A missing sstr-2 is therefore probably responsible for about 20% of cases involving a positive octreotide scan without successful response to octreotide treatment.10 Polyclonal antibodies against sstr-2 for immunohistochemical studies, together with octreotide scintigraphy, may help to identify patients suitable for somatostatin analog treatment.11 However, our patient’s octreotide scintigraphy results were positive, and good initial symptom control was throughout the procedure (fig. 1). In contrast, 5-HT concentrations in plasma showed an almost sixfold fluctuation, between 205 and 1,578 μg/l (fig. 1). However, no apparent correlation was observed between 5-HT concentrations in plasma and either flushing episodes or hypotension.

The same prophylaxis was administered before the subsequent two chemoembolizations. While hemodynamic conditions during the second intervention (repeated embolization of the metastases in the right lobe 6 weeks later) were much more stable than in the first procedure, 5-HT concentrations in whole blood were also much increased at baseline and varied in a similar range (982–1,250 μg/l). Again, plasma 5-HT concentrations varied widely (85–1,072 μg/l). Although vasoconstrictor therapy was not necessary, ketanserin was used to control hypertensive episodes. Again, no apparent correlation was seen between 5-HT plasma concentrations and blood pressure alterations.

Anesthesiology. V 98, No 4, Apr 2005
Fig. 1. Hemodynamic measurements and serotonin (5-HT) concentrations in whole blood and plasma before and during chemoembolization of carcinoid liver metastases. Flushing episodes and pharmacologic interventions are marked by arrows, and chemoembolizations are marked by bars. Several flushing episodes with either hypertension or hypotension occurred, mostly during or shortly after embolization. Whereas 5-HT whole blood concentrations were stable, 5-HT plasma concentrations increased after the first embolization and markedly fluctuated. Atropin was given at the request of the radiologists for a better embolization result with higher heart rate.
achieved after the beginning of octreotide treatment, most likely indicating a sstr-2-positive tumor. Nonetheless, somatostatin failed to prevent 5-HT release during chemoembolization. Despite somatostatin infusion at an even higher dosage (0.1 μg · kg⁻¹ · min⁻¹ or 350 μg/h) than recommended, high baseline 5-HT concentrations in whole blood, increasing slightly from the first to the third procedure despite chemoembolization, failed to decrease. Furthermore, somatostatin failed to suppress the increase in 5-HT plasma concentrations occurring during each chemoembolization (i.e., the 5-HT release from the tumor).

Different mechanisms of mediator release may explain the failure of somatostatin during chemoembolization of carcinoid tumors. Physiologic mechanisms of 5-HT release from enterochromaffin cells and carcinoid tumors include exocytosis of secretory granules, in which 5-HT is released from enterochromaffin cells and carcinoid tumors. Physiologic mechanisms of 5-HT release include exocytosis of secretory granules, in which 5-HT is released from enterochromaffin cells and carcinoid tumors. However, this patient did not receive steroids and no apparent correlation between 5-HT concentrations and decreased their increase after pentagastrin stimulation. 17 5-HT concentrations in whole blood showed only minor variations during the succeeding chemoembolization in four patients with intraoperative prophylaxis (octreotide, 100 μg subcutaneously 4 times daily, and ketanserin, 20 mg intravenously 2 times daily), consistent with our findings, and hemodynamic variables were influenced little. However, the more sensitive 5-HT plasma concentrations were not measured. 17

Fatal mediator release despite somatostatin prophylaxis is also suggested by a lethal carcinoid crisis, despite prophylactic administration of somatostatin (500 μg subcutaneously preoperatively and intravenously intraoperatively) in a patient undergoing tricuspid valve replacement. However, this patient did not receive steroids and antihistaminic drugs preoperatively, and 5-HT concentrations were not measured. 18

In conclusion, prophylactic perioperative somatostatin infusion in a recommended dose of 0.1 μg · kg⁻¹ · min⁻¹ did not prevent serotonin release during chemoembolization of octreotide receptor-positive carcinoid metastases, despite successful preoperative octreotide treatment. Accordingly, sudden hemodynamic instability due to massive mediator release should be expected in patients with carcinoid syndrome, despite the use of currently recommended prophylactic medications.

References
3. Thueson A, Björck G, Björkman G, Waldenström J: Malignant carcinoid of the small intestine with metastases to the liver, valvular disease of the right side

Anesthesiology, V 98, No 4, Apr 2005
Skin Burn Caused by Operating Light during a Long Operation after Photodynamic Therapy

Taiga Itagaki, M.D.,* Matsuyuki Doi, M.D.,† Shigehito Sato, M.D.,‡ Shigeru Kato, M.D.*

PHOTODYNAMIC therapy (PDT) is becoming a popular treatment for early-stage esophageal, bronchial, stomach, and head and neck cancers.¹⁻³ However, PDT has a major side effect: skin photosensitivity. The mechanism of the effectiveness of PDT is explained as the combined effects of a photosensitizing agent (photosensitizer) and visible light. Dougherty et al.¹ reported that skin photosensitivity could last up to 2 months after the administration of a photosensitizer, but it is usually uncommon if there is no exposure to direct light and concentrated light. Only two cases of finger skin burn associated with a pulse oximeter during PDT have been reported.⁵,⁶

We present the case of a patient who showed a severe facial burn caused by an operating light during a long operation undergone 52 days after PDT.

Case Report

The patient is a 79-yr-old man (154 cm, 45 kg) with squamous cell carcinoma in the right maxillary sinus. He had a history of hypertension and had been treated with spironolactone medication since he was 60 yr old. He underwent partial maxillectomy after chemotherapy and radiation therapy. Six months after the first operation, PDT was scheduled for confirmed recurrence.

Forty-eight hours before PDT, the patient was given 96.7 mg porfimer sodium (Photofrin®; Wyeth Lederle Japan Co., Tokyo, Japan) intravenously. The patient stayed 2 days in a dimly lit room (300–200 lux) to avoid induced skin photosensitivity. Three weeks after PDT, a dermatologist evaluated the patient’s skin photosensitivity by exposing the back of the hand to sunlight for 5 min. The patient’s skin reaction to this test was evaluated as negative. He was released from the dimly lit room and put in a normal hospital ward while using a sunscreen cream and avoiding the direct rays of the sun. Thereafter, the patient did not show any signs of skin photosensitivity during his hospital stay until an operation 52 days after PDT. He had a radical operation for maxillary cancer, with restoration of the forearm’s free flap. The patient was premedicated with 0.5 mg atropine and 20 mg famotidine intramuscularly. During anesthesia, standard patient-monitoring devices, including a pulse oximeter, were applied. General anesthesia was induced with 5 mg/kg thiopental and 2 μg/kg fentanyl. Vecuronium, 0.15 mg/kg, was used to facilitate tracheal intubation. Anesthesia was maintained by inhalation of 67% nitrous oxide, 33% oxygen, and 1 to 2% sevoflurane. Intraoperatively, alfentanil alfadex and dopamine were continuously infused, and cefazolin sodium was administered as an antibiotic. Operating time was 14 h and 51 min. Two sets of operation room lights, Outer Space 9° (9-lamp type) and Outer Space 4° (4-lamp type; Yamada Shadowless Lamp Co., Tokyo, Japan), were used. These are standard lights used at our institution, and their average illuminations are 135,000 lux and 96,000 lux, respectively. Both operating lights were placed at a distance of about 120 cm from the patient. No lighting (e.g., headlamps) that illuminated the patient was used besides the operating lights.

After the operation, the patient showed severe swelling and erythema of the face, which was the site of surgery, and a dermatologist diagnosed a second-degree burn injury (fig. 1). There was also a slight reddening around the right forearm, which was the operating site for the donor of the graft. All other parts of the body were covered with
clothing, and no burns were observed there. In addition, there was no burn injury on the left index finger, which is where the pulse oximeter probe was placed. Because the placed free flap became necrotic after surgery, the flap was removed on the fifth postoperative day in the same operating room. The time needed for flap removal was 1 h and 38 min. Although the same operating lights as for the first operation were used, the patient did not show any aggravation or new burn during this operation. After the second operation, the burn began to heal gradually, and the patient left the intensive care unit on the 13th postoperative day.

Discussion

In this case report, we describe a serious burn caused by an operating light during a long operation, which was performed 52 days after PDT, despite an evaluation of skin photosensitivity producing a negative result. As far as we know, there have been no reports of burn injury due to an operating light after the administration of a photosensitizer, and only two cases of burn injury associated with a pulse oximeter during PDT have been reported.5,6

In the two case reports of burns caused by a pulse oximeter, each patient had received PDT during general anesthesia for medical treatment of esophageal cancer or parietal malignant ependymoma.5,6 The two burn injuries were induced by exposure to light from pulse oximeters at between 24 and 96 h after injecting the photosensitizer. However, our patient showed a serious burn injury 4 weeks after the definitively negative result of the photosensitivity evaluation. Before anesthesia, we considered that the porfimer sodium concentration in normal tissue had already decreased to a concentration that was much less than that at the photosensitivity evaluation and there would be no possibility of an abnormal pharmacologic response. However, in this case, burn injury was caused by the activation of extant porfimer sodium injected.

When 2 mg/kg porfimer sodium, a photosensitizer having an affinity to tumor cells, is injected intravenously, the concentration in normal tissue is about one fourteenth of that in tumor tissue at 48-72 h after injection. This difference between normal tissue and tumor tissue is maximized at this time. PDT is a selective treatment by which a laser beam is irradiated at the focus according to this period to destroy tumor cells using a photochemical reaction.7 Porfimer sodium is in an excitation state and produces energy if it receives light of the proper wavelength. It activates oxygen in tissue, produces super oxide, and, finally, demonstrates an antitumor function.8 The most frequent side effect of porfimer sodium is photosensitivity. Its incidence was 20.6% at the time the drug was recognized in Japan in October 1994. Therefore, patients must avoid direct light and concentrated light for at least 1 month after porfimer sodium injection and be kept under observation in a dimly lit room. An evaluation of skin photosensitivity is performed at 1 month after medication. The test involves exposing the back of the hand to the direct rays of the sun for 5 min. If the test result is negative, patients may be moved to a general ward; if it is positive, patients continue to be protected for an additional 2 weeks, after which the same test is repeated.

Porfimer sodium has its highest absorption peak in the area of 405 nm (blue-violet). However, this wavelength overlaps with the absorption band of hemoglobin in vivo. Because of its low tissue permeability, it is not used as an excitation light. We generally use the Excimer Dye Laser® (PDT EDL-1; Hamamatsu Photonics K.K., Hamamatsu, Japan) for PDT, which is a pulse laser that radiates 630-nm red light and has good tissue permeability despite its much lower absorption than 405-nm blue light.5,8 One of the wavelengths of the pulse oximeter that Radu et al.5 used was also 630 nm. We measured the wavelength of our operating light, and it had a spectrum ranging from 250 to 800 nm, with a peak of 600 nm. Both the pulse oximeter and the operating light emit light that can excite porfimer sodium.

Some agents have been reported to be photosensitizing drugs: antibiotics (tetracyclines, fluoroquinolones, and sulfonamides), nonsteroidal antiinflammatory drugs, thiazide diuretics, antimitotic drugs, psychiatric drugs, calcium channel blockers, fibric acid derivatives, and so forth.9,10 Our patient had not received such photosensitizing agents besides porfimer sodium prior to anesthesia. There is no report in the literature of skin photosensitivity induced by anesthetic agents. Therefore, there is a very small possibility that agents besides porfimer sodium participated in causing the burns.

The evaluation of photosensitivity is a qualitative evaluation to determine whether a patient can be moved to
a normal ward. It is not intended to determine whether patients can bear a special state, such as long exposure to light during an operation. We think that a quantitative measurement of photosensitizer in tissue is more effective for estimating the risk of burn injury and also for determining the possible exposure time to operating light. Based on our experience with the present case, we recommend the following: (1) the method of evaluation of photosensitivity should be reevaluated; (2) the operating time should be shortened as much as possible; and (3) second-generation photosensitizers that have a shorter duration of photosensitivity than porfimer sodium, such as those that are now used throughout Europe and the United States, should be used.2,5,11 The duration of skin photosensitivity caused by such drugs is shown in table 1. The high clearance rate of these drugs results in a very short light-shielding time. Using a filter that can cut wavelengths that show a high absorbance to a photosensitizer should be adopted as a fourth measure.

Consideration of these factors will serve to prevent burn injury during post-PDT operation and PDT during general anesthesia.

In the future, together with the popularization of PDT, there may be an increase in surgical cases of patients with potential photosensitivity, including cases of PDT during general anesthesia. To prevent the occurrence of burn injury during these procedures, in addition to evaluating the patient’s skin photosensitivity and recording the time elapsed after injection of photosensitizer, it is also important to check the wavelengths of any lighting facilities in the operating room.

References


Table 1. Characteristics of Photosensitizers

<table>
<thead>
<tr>
<th>Photosensitizer</th>
<th>Light Conditions, nm</th>
<th>Optimal Time of Irradiation, h</th>
<th>Duration of Skin Photosensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porfimer sodium</td>
<td>630</td>
<td>24–72</td>
<td>4–6 weeks</td>
</tr>
<tr>
<td>Tin ethyl etiopurpurin</td>
<td>660</td>
<td>4–6</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Benzoporphyrin</td>
<td>692</td>
<td>3</td>
<td>1 week</td>
</tr>
<tr>
<td>Meta-tetra(hydroxyphenyl)chlorin</td>
<td>650–664</td>
<td>36–168</td>
<td>1 week</td>
</tr>
<tr>
<td>Mono-l-aspartyl chlorine 6</td>
<td>664</td>
<td>48</td>
<td>3 days</td>
</tr>
<tr>
<td>Aminolevulinic acid</td>
<td>630</td>
<td>3–6</td>
<td>24 h</td>
</tr>
</tbody>
</table>

Anesthesiology, V 98, No 4, Apr 2005
Inadvertent Spinal Anesthesia during Continuous Epidural Anesthesia in an Infant
Andreas H. Taenzer, M.D., F.A.A.P.*

SPINAL anesthesia is a known complication of epidural and caudal catheters. We report a case involving a 3-month-old infant in whom a spinal level from a caudal-to-thoracic catheter (threaded to the T4 level) was detected despite normal results of an epidurogram.

Case Report

A 7-kg, 3-month-old infant underwent repair of a congenital right diaphragmatic hernia. After an unremarkable early infancy, the diagnosis of diaphragmatic hernia was made on the basis of typical findings on a chest radiograph obtained for symptoms of upper respiratory infection at the age of 2 months.

Following mask induction and intubation, the patient was placed in the lateral decubitus position. A 20-gauge stiletted catheter (Abbott Laboratories, North Chicago, IL) was threaded from the sacral hiatus 15 cm up the epidural space via an 18-gauge Insyte catheter (Becton-Dickinson Infusion Therapy Systems, Sandy, UT). The catheter has a terminal opening with no side pores. Insertion was uneventful; the catheter was threaded in a continuous, steady motion. It neither met resistance nor was partially withdrawn or rethreaded. Following aspiration of the catheter, which was negative for blood or cerebrospinal fluid (CSF), a test dose of 0.7 ml (0.1 ml/kg) lidocaine, 1.5%, with epinephrine (1:200,000) was administered without signs of intravascular injection. General anesthesia was maintained with isoflurane in oxygen. In addition, regional anesthesia was maintained with intermittent boluses of 0.25% bupivacaine via the epidural catheter. No opioids were administered intraoperatively.

Following an uneventful right thoracotomy and diaphragmatic hernia repair, the patient was extubated in the operating room. Prior to transport to the PACU, 0.7 ml Isovue M200 (Bracco Diagnostics, Princeton, NJ) was injected through the caudal catheter and yielded a typical epidurogram, with the catheter tip at the T4. A continuous epidural infusion of 2% chloroprocaine at a rate of 1 ml/h was started and maintained postoperatively. The infant was comfortable and did not require any other analgesics.

The patient was evaluated by an anesthesiologist prior to transfer to a close observation unit and had normal motor function of all extremities 4 h after the operation.

The next morning it was noted that the infant did not move his legs. His respiratory rate had remained in the low 30s (breaths/min), and the oxygen saturation remained greater than 95% throughout the night. The patient was immediately evaluated; vital signs were normal. Neither the respiratory rate nor effort had changed. He appeared comfortable, with no sign of distress or pain from the incision site. A spinal level with complete lower extremity motor and sensory block below the umbilicus and a sensory block two interspaces above and below the thoracotomy site (tested by exposure to ice) was found. The infusion was discontinued. The caudal catheter was easily aspirated, yielding 2 ml of clear fluid, which tested positive for glucose at 102 mg/dl.

Again, 0.7 ml Isovue M200 was injected through the caudal catheter and yielded normal epidurogram results (fig. 1), with the position of the catheter tip unchanged at the T4 level. The caudal catheter was removed, and the infant had an uneventful postoperative course, with return of normal sensation and lower extremity muscle tone.

Discussion

Epidural anesthesia has been used for decades1 in infants and children with an overall impressive safety record. The French-Language Society of Pediatric Anesthesiology collected data on a total of 17,837 central nervous system blocks, consisting of 15,013 caudal blocks (single shot), 293 sacral epidural blocks, 2,396 lumbar epidural blocks, and 135 thoracic epidural blocks. Dural penetration occurred a total of eight times.2

We commonly use thoracic epidural catheters placed via the caudal approach3 and continuous infusion of chloroprocaine for epidural analgesia in infants.4–7 We confirm placement of the catheter intraoperatively by fluoroscopy. In this case we obtained an epidurogram after surgical repair and before transfer to the PACU. After we were able to aspirate CSF, we injected contrast medium into the catheter, expecting to find a myelogram, but again found a pattern consistent with epidural

* Associate Director of Pediatric Anesthesia and Research Director. Current position: Assistant Professor, Department of Anesthesiology, University of Vermont, Burlington, Vermont.

Received from the Department of Anesthesiology, Maine Medical Center, Portland, Maine. Submitted for publication August 12, 2002. Accepted for publication December 9, 2002. Support was provided solely from institutional sources.

Address reprint requests to Dr. Taenzer: Maine Medical Center, Department of Anesthesiology, 22 Bramhall Street, Portland, Maine 04102. Address electronic mail to: taenz9@spectrummg.com. Individual article reprints may be purchased through the Journal Web site, www.anesthesiology.org.
injection. Both films were reviewed subsequently by two different radiologists at different institutions (Maine Medical Center, Portland, ME, and Children’s Hospital Boston, Boston, MA) and were deemed to show normal epidurogram results.

As a mechanism, we suggest that the stiletted catheter caused a rent in the sacral or lumbar dura at the time of placement, causing chloroprocaine to enter the spinal space and CSF to enter the epidural space. Leakage of chloroprocaine into and CSF out of the spinal space would have caused a low spinal level and positivity of the CSF aspirated from the epidural catheter while maintaining a functional epidural catheter with very good analgesia in the thoracic region. Since the infant remained in supine position postoperatively, the isobaric chloroprocaine did not cause a total spinal block secondary to the thoracic kyphosis. We cannot prove that the infant did not have a dense epidural lower extremity block, as well as a therapeutic thoracic level with a window of cold sensation in between, in addition to a false-positive result of the glucose test on the aspirate. However, this would be an unlikely combination of events with a single terminal orifice catheter.

Neither chloroprocaine nor any of the intravenous solutions contained glucose and could easily explain an aspirate glucose concentration of 102 mg/dl. We do not think that the 18-gauge intravenous catheter punctured the dura at the time of placement since we would have expected return of CSF, but it cannot be ruled out entirely.

This case report emphasizes the importance of close monitoring for motor and sensory block and of respiratory rate and effort in nonverbal infants undergoing epidural anesthesia to detect an inadvertent dense motor block, even when the results of an epidurogram are normal.

References