To the Editor—We read with great interest the case report1 on the application of a newly designed right-sided, double-lumen endobronchial tube (R-DLT) in patients with a very short right mainstem bronchus.

However, in citing our work2 on the improvement of the endobronchial positioning of the R-DLT, Hagihira et al. stated that we modified the design of the bronchial cuff and that these changes seem to offer little improvement. This statement is inconsistent with our published manuscript which demonstrates, on a randomized series of 80 patients, that the modified enlarged area of the lateral orifice (and not the bronchial cuff as stated by Hagihira et al.) improve the success rate of final positioning from 74 to 97% with a $P < 0.0109$. These two new versions of the R-DLT are not intended to solve the same problem, but the final objective, improvement of the use of R-DLT, is similar.

We thank Dr. Hagihira for this interesting case report. While this new R-DLT may become a useful tool for thoracic anesthesiologists, we would first encourage them to validate its use with a randomized study.

Jean S. Bussiéres, M.D., F.R.C.P.C.,* Jacques Somma, M.D., F.R.C.P.C., B.Eng., University Heart and Lung Institute at Laval Hospital, Quebec City, Quebec, Canada. jean.bussieres@anr.ulaval.ca

References

(Accepted for publication January 13, 2009.)
Infection Control Practices by the Anesthesiologist

To the Editor.—We read with interest the article by Dr. Randy W. Loftus et al., entitled “Transmission of Pathogenic Bacterial Organisms in the Anesthesia Work Area.” The authors reported contamination of the anesthesia workspace and the sterile stopcocks. This is an important study that highlights the risks of contamination and the potential role that the anesthesiologist may have in the spread of disease. The authors state that it is a “reasonable assumption that the aseptic practice by anesthesia providers at our institution reflects practice elsewhere.” However, I do not believe that this is a valid assumption, and would like to know what it is based on. It would have been important to describe the actual anesthesia practice, and if there is a standardized protocol of the anesthesia practitioner.

In our institution, we have been in the process of implementing a system that is practiced as a standard throughout the department, which consists of using a front “dirty” table, and a back “clean” table. The front table is the work table of the anesthesia machine. It is covered for each patient with a disposable sterile drape. Only items specifically for the current patient are placed on the drape. Additional medications that have been prepared, but are not definitely being used, are kept on the back table, which is the tabletop of the anesthesia cart.

References

In Reply.—We appreciate the thoughtful criticism provided by Drs. Neustein and Williams regarding our article entitled “Transmission of Pathogenic Bacterial Organisms in the Anesthesia Work Area.” They raise an interesting question regarding the likelihood of interinstitutional variability in infection control practices of anesthesia providers, a question inspired by our comment that “it is a reasonable assumption that the aseptic practice by anesthesia providers at our institution reflects practice elsewhere.”

In the 1970s, the Centers for Disease Control and Prevention initiated the National Nosocomial Infection Surveillance Study (NNIS) to continuously monitor infection control rates in hospitals across the United States. Data derived from the NNIS provided statistical evidence for the need to improve preventative measures and generated a set of guidelines for recognition and management of infection. Our statement was based on the NNIS quartile ranges of our institution, which suggest that our overall infection control practices are excellent; as good as or better than the majority. We are at the 50th percentile for new cases of Methicillin-resistant Staphylococcus aureus and the 25 percentile for Vancomycin-resistant Enterococcus. The NNIS is now known as the National Health-care Safety Network, and it continues to serve as a reasonable comparative measure of interinstitutional infection control practices.

That being said, we agree that there is a possibility of both intra- and interinstitutional variability in infection control practices that would be unaccounted for by gross estimates as presented by NNIS quartile ranges. This could impact intraoperative bacterial transmission magnitude and patterns, making multistitutional studies evaluating intraoperative bacterial transmission an important consideration for further work in this area. We hope to address this important question with a recently funded study.

Interestingly, the infection control practices at Dartmouth-Hitchcock Medical Center largely reflect those at Mount Sinai. We too encourage designated dirty and clean areas in the anesthesia work area. The front area, the table connected to the anesthesia machine, is to remain clean (in theory), while the back of the medication cart is designated for placement of dirty health care tools into a disposable plastic bag. Like all infection control practices, there is not a 1:1 correlation with guidelines and actual practice.

The front area is decontaminated between patients with a quarternary ammonium compound, as described in our article, and similar to

In Reply.—We appreciate the thoughtful criticism provided by Drs. Neustein and Williams regarding our article entitled “Transmission of Pathogenic Bacterial Organisms in the Anesthesia Work Area.” They raise an interesting question regarding the likelihood of interinstitutional variability in infection control practices of anesthesia providers, a question inspired by our comment that “it is a reasonable assumption that the aseptic practice by anesthesia providers at our institution reflects practice elsewhere.”

In the 1970s, the Centers for Disease Control and Prevention initiated the National Nosocomial Infection Surveillance Study (NNIS) to continuously monitor infection control rates in hospitals across the United States. Data derived from the NNIS provided statistical evidence for the need to improve preventative measures and generated a set of guidelines for recognition and management of infection. Our statement was based on the NNIS quartile ranges of our institution, which suggest that our overall infection control practices are excellent; as good as or better than the majority. We are at the 50th percentile for new cases of Methicillin-resistant Staphylococcus aureus and the 25 percentile for Vancomycin-resistant Enterococcus. The NNIS is now known as the National Health-care Safety Network, and it continues to serve as a reasonable comparative measure of interinstitutional infection control practices.

That being said, we agree that there is a possibility of both intra- and interinstitutional variability in infection control practices that would be unaccounted for by gross estimates as presented by NNIS quartile ranges. This could impact intraoperative bacterial transmission magnitude and patterns, making multistitutional studies evaluating intraoperative bacterial transmission an important consideration for further work in this area. We hope to address this important question with a recently funded study.

Interestingly, the infection control practices at Dartmouth-Hitchcock Medical Center largely reflect those at Mount Sinai. We too encourage designated dirty and clean areas in the anesthesia work area. The front area, the table connected to the anesthesia machine, is to remain clean (in theory), while the back of the medication cart is designated for placement of dirty health care tools into a disposable plastic bag. Like all infection control practices, there is not a 1:1 correlation with guidelines and actual practice.

The front area is decontaminated between patients with a quarternary ammonium compound, as described in our article, and similar to