To the Editor—Kalkman et al. link anesthesia to clinically deviant behaviors in children anesthetized for urologic procedures before age 2 yr but make no mention of intraoperative oxygen measurement in their study cohort. Wilder et al. link multiple pediatric anesthetic exposures to learning disabilities using a sophisticated database, albeit one built before pulse oximetry was in wide use. Editorially, Patel and Sun provide a review of molecular mechanisms with “relevance” to human development that overlooks the current state of data pertaining to oxygen’s neurotoxic effects in cell and animal models. Although all exemplify Engle’s proposition that scientists and clinicians must account for how submolecular or molecular actions ramify through a “continuum of natural systems” to produce events at higher systems levels—persons, families, communities, cultures, the biosphere—none acknowledge that early and multiple anesthetic exposure is also a marker for early and multiple oxygen exposure.4,5

Anesthesiologists and the anesthesia literature, by and large, tend to discount supplemental oxygen effects in patient care in the absence of ischemia–reperfusion injury.6 Others have more balanced views. Maltepe and Saugstad note that evolution equips humans with numerous hypoxemia defense responses; hyperoxia, however, always iatrogenic, is not as easily defended against, biologically speaking. Neonatologists know hyperoxia is not always beneficial in neonatal resuscitation.8 Supplemental oxygen use for 3 min or more at birth shows a vexing connection to an increased cancer incidence for children younger than 8 yr. The now well established association of retinopathy of prematurity with supplemental oxygen use was incorrectly overlooked for decades.10

Degos et al. list hypoxia-induced oxidative stress reduction among potential targets for neuroprotective efforts. But significant hypoxemia may be less common than intentional hyperoxia in pediatric anesthesia practice. Even with the classic 70% nitrous oxide–30% oxygen plus volatile anesthetic inhalational induction sequence, hyperoxia exists. Recent bench research using cell cultures and animal models shows that hyperoxia alters cell ultrastructure and function across multiple organelle and neuronal action sites: mitochondria, membrane surfaces, cell nuclei, and progenitor cell lines.12–14 Reactive oxygen species, with other mechanisms, are a source of submolecular injury where hyperoxia is induced experimentally. Such data suggest that neurocoidal/neurotoxic potential effects research must account for hyperoxia’s submolecular effects, too—effects Engle’s model predicts will express at higher levels of biopsychosocial organization.

Endeavors such as Safety of Key Inhaled and Intravenous Drugs in Pediatrics (SAFEKIDS) and General Anesthesia for Effects on Neurodevelopmental Outcome and Apnea in infants (GAS) are much needed.15 Should protocols in future clinical studies include control anesthetics administered at atmospheric or “capped” oxygen partial pressures? Controlled for, hyperoxic effects—known and unknown—might be reasonably addressed as answers emerge to the question, Do anesthetics damage the developing human brain? How else can we gain certainty that iatrogenic hyperoxia does not also play a role in the human developmental adverse outcomes we are now tempted to attribute predominantly to anesthetic agents? Sound science dictates that any known factors that might contribute to pediatric behavioral problems, such as lead, iron, and mercury levels—not just anesthetic exposure—should be taken into account.16 Iatrogenic hyperoxia, sadly, might need to be investigated, too.

Vincent J. Kopp, M.D., University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. vkopp@aims.unc.edu

The author thanks Nicole Chenuault, B.A. (Administrative Support Associate, Department of Anesthesiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina), for manuscript preparation assistance.

References

15. FDA to study anesthetic risks in pediatrics. Anesthesiol News 2009; 35:7

(Accepted for publication July 31, 2009.)
of anesthesia, it is highly probable that a state of hyperoxemia is induced in subjects undergoing anesthesia and surgery. Kopp suggests that it is this hyperoxemia that can injure the brain, and in particular the developing brain.

There is growing evidence that the administration of oxygen in concentrations that produce hyperoxemia is associated cellular injury. The adverse impact of high concentrations of oxygen on retinopathy of prematurity and on bronchopulmonary dysplasia has long been recognized. In susceptible neonates, the incidence of cerebral palsy is increased in association with hyperoxemia. More recent evidence also indicates that resuscitation of premature neonates with a high fraction of inspired oxygen (FIO2) is associated with greater mortality and worse outcomes. Indeed, the authors of a recent metaanalysis concluded that the available data support the use of room air for resuscitation of asphyxiated neonates in place of 100% oxygen. Importantly, the use of room air for this purpose does not seem to be associated with worse cognitive outcomes.

Preclinical studies in adult animals also suggest that resuscitation from local ischemia with high FIO2 leads to greater neurologic injury. In the investigations of Kalkman et al and Wilder et al, the concentration of oxygen that was administered is not clear. It is reasonable to assume, based on the current standard of practice, that supplemental oxygen was administered and some degree of hyperoxemia did occur. Could the association between anesthetic exposure and adverse outcomes be explained by oxygen toxicity rather than anesthetics? Although Kopp’s contention is feasible, it is difficult to separate the effects of oxygen from those of the patients’ primary disease, anesthetics, surgery, postsurgical inflammation, and use of analgesics. The question of whether oxygen can injure the otherwise normal developing brain is best answered in the laboratory.

Of significant interest are the observations of Felderhoff-Mueser et al, who demonstrated oxygen toxicity in the developing brain. An inspired concentration of oxygen of 80% resulted in widespread neurodegeneration. Toxicity was apparent with as little as 2 h of exposure. The pattern of injury was similar to that produced by anesthetics. Moreover, the period of vulnerability, as with anesthetics, was approximately postnatal day 7, with little injury seen at postnatal day 14. By contrast, injury was not observed with the administration of 40% oxygen for as long as 12 h. This begs the question of whether anesthetic toxicity observed in previously published studies might be due to oxygen.

In published studies to date, the reported inspired concentrations of oxygen were 30%, 40%, and 21%. The duration of exposure ranged from 4 to 6 h. In these studies, injury produced with anesthesia was significantly greater than that in control nonanesthetized animals. With the exception of the studies of Stratmann et al, the concentration of oxygen used was well below the level that has been shown to produce injury to the developing brain. Furthermore, the duration of exposure is well below the 12 h exposure to 40% oxygen in the study of Felderhoff-Mueser et al, in which injury was not observed. The available data indicate, therefore, that in experimental models, the toxicity produced by anesthetic exposure is not due to oxygen administration but due to anesthetics.

There is a remote possibility that there might be a relative increase in brain tissue partial pressure of oxygen (PPO2) during anesthesia, even with the administration of air. Anesthetics decrease the cerebral metabolic rate for oxygen substantially and, depending on the inspired concentration of inhaled agents, cerebral blood flow may increase.

Whether this relative increase in tissue PPO2 is detrimental in the developing brain is not clear. However, it is not outside of the realm of possibility that relative tissue hyperoxia might reduce the antioxidant defenses of neurons and thereby make them more vulnerable to anesthetic neurotoxicity. This question will have to be addressed experimentally. We therefore invite Dr. Kopp to join us in our efforts to more definitely characterize anesthetic (and oxygen) toxicity in the developing brain and to develop the means and practices by which this toxicity can be prevented. This would, in turn, allow us to bring more balance to the discussion.

Brian P. Head, Ph.D., Piyush M. Patel, M.D.*
VA San Diego Healthcare System, San Diego, California. ppatel@ucsd.edu

References


Accepted for publication July 31, 2009.