similar to ours, insertion after stabilizing the tongue may be necessary.

Susheela Taxak, M.D., Ajith Gopinath, M.B.B.S.* *Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India. dr.ajith44@gmail.com

References

(Accepted for publication October 28, 2009.)

In Reply:

We thank Drs. Taxak and Gopinath for their valuable contribution in response to our article.1 Failure of supraglottic airway devices occurs because of either failed insertion or failed ventilation, despite successful insertion. In case of the i-gel™ (Intersurgical Ltd., Wokingham, Berkshire, United Kingdom), insertion may fail because of the inability to pass the device between the front teeth, the tongue, or the pharyngeal curvature. Overall, the inability to insert the i-gel™ is quite a rare event (1.3%).† As Drs. Taxal and Gopinath point out correctly that the bulky design of the i-gel™ with its large airway opening may cause entrapment of the tongue. We agree that digitally pushing the tongue out of the way may solve the problem. However, many anesthesiologists would be reluctant to put their finger into the mouth of a patient who has not received muscle relaxation. A simple tongue retractor might be used too.

In addition, clinicians need to be aware of the fact that the i-gel™ may not only push the tongue down, impeding successful insertion, but also displace the base of the tongue after insertion. That may lead to protrusion of the tongue from the mouth, trapping its tip between the lower teeth and the integral bite block of the i-gel™ (see fig. 1). In fact, in a large prospective evaluation of nearly 2,000 cases, we documented a patient who suffered from prolonged bilateral numbness at the tip of the tongue because of that entrapment in an otherwise short and uneventful anesthesia.† That might have happened with the use of other supraglottic airway devices too. We thus strongly recommend checking the tongue position in every patient after successful i-gel™ insertion.

Lorenz Theiler, M.D., Robert Greif, M.D., M.M.E.* *University Hospital Bern, University of Bern, Bern, Switzerland. robert.greif@insel.ch

Reference

(Accepted for publication October 28, 2009.)

What about the Surgery?

To the Editor:

I enjoyed reading Prof. Sessler’s editorial view regarding the long-term consequences of anesthetic management. Prof. Sessler reviewed the changes in anesthetic practice that have occurred in the past few decades, which have led to significant improvement in patient care and reduction in perioperative morbidity and mortality.

I was surprised, however, that there was no mention of the changes that have occurred in surgical practice during this period. The trend toward minimal invasive surgery in many surgical subspecialties has profoundly changed the stress that the patient undergoes during surgery and afterward. Laparoscopy has replaced laparotomy, and video-assisted thoracoscopy has replaced thoracotomy. Procedures such as angiographic-guided stent insertion for management of aortic disease and endovascular obliteration for cerebral arteriovenous malformation have reduced the number of large open operations that are performed in the operating rooms. In cardiac surgery, we now have off pump coronary artery bypass and minimal invasive valve replacements. Many operations have become ambulatory procedures, such as arthroscopies or extracorporeal shock wave lithotripsy. Minimal invasive procedures cause less bleeding, less tissue injury, less stress to the body, and are less painful. Thus, less blood and
fluid are administered, less opioids are given, the patient is mobile sooner, and all complications are reduced.

In the 1970s, when perioperative death from anesthetic cause was estimated as 1–10:10,000 anesthetics,²,³ the 10,000 anesthetics were given for open operations that were performed in those days. Today, when we estimate death in 10,000 anesthetics, the number includes relatively smaller procedures. Moreover, the same “open surgery” had a different meaning 30 yr ago than today. Advances in surgical techniques, such as electric cutting and coagulation, staplers instead of hand-made anastomosis, and skin stitching, have changed the course of open surgery. Preoperative imaging, such as magnetic resonance imaging or isotope mapping, mammographic wire localization, and sentinel node technique, enables the surgeon to focus on the diseased area and avoid large exploration on the operating table. In addition, in some cases, the radical approach for cancerous diseases did not show a better outcome than less radical surgery, and some operations were changed as a result, for example, radical mastectomy.⁴

In general, anesthesia is coupled with surgery, for better or worse. To fully understand and analyze the changes and advances in anesthesia, we need to know what happened in surgery during that time. The credit for reduced morbidity and mortality can be attributed to all parties taking care of the patient.

Michal Barak, M.D., Rambam Health Care Campus and the Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel. m_barak@rambam.health.gov.il

References

(Accepted for publication November 2, 2009.)

In Reply:

Dr. Barak is of course correct that surgery and anesthesia have advanced during the past two decades; for that matter, nursing care has also improved. However, as mentioned in my editorial,¹ now we also care for much sicker patients than in previous years.

The extent to which various factors contribute to improved perioperative outcomes remains unclear and will presumably never be accurately proportioned. Assigning credit (or blame) is less important than recognizing that our management decisions may influence long-term outcomes.

Daniel I. Sessler, M.D., The Cleveland Clinic, Cleveland, Ohio. ds@or.org

Reference

(Accepted for publication November 2, 2009.)