Perioperative Single Dose Systemic Dexamethasone for Postoperative Pain

A Meta-analysis of Randomized Controlled Trials

Gildasio S. De Oliveira, Jr., M.D.,* Marcela D. Almeida, M.D.,† Honorio T. Benzon, M.D.,‡ Robert J. McCarthy, Pharm.D.§

Background: Dexamethasone is frequently administered in the perioperative period to reduce postoperative nausea and vomiting. In contrast, the analgesic effects of dexamethasone are not well defined. The authors performed a meta-analysis to evaluate the dose-dependent analgesic effects of perioperative dexamethasone.

Methods: We followed the PRISMA statement guidelines. A wide search was performed to identify randomized controlled trials that evaluated the effects of a single dose systemic dexamethasone on postoperative pain and opioid consumption. Meta-analysis was performed using a random-effect model. Effects of dexamethasone dose were evaluated by pooling studies into three dosage groups: low (less than 0.1 mg/kg), intermediate (0.11–0.2 mg/kg) and high (0.21 mg/kg).

Results: Twenty-four randomized clinical trials with 2,751 subjects were included. The mean (95% CI) combined effects favored dexamethasone over placebo for pain at rest (4 h, 0.32 [0.47 to −0.18], 24 h, −0.49 [−0.67 to −0.31]) and with movement (4 h, −0.64 [−0.86 to −0.41], 24 h, −0.47 [−0.71 to −0.24]). Opioid consumption was decreased to a similar extent with moderate 0.82 (1.30 to −0.42) and high 0.85 (−1.24 to −0.46) dexamethasone, but not decreased with low-dose dexamethasone −0.18 (−0.39 to −0.03). No increase in analgesic effectiveness or reduction in opioid use could be demonstrated between the high- and intermediate-dose dexamethasone. Preoperative administration of dexamethasone appears to produce a more consistent analgesic effect compared with intraoperative administration.

Conclusion: Dexamethasone at doses more than 0.1 mg/kg is an effective adjunct in multimodal strategies to reduce postoperative pain and opioid consumption. Preoperative administration of the drug produces less variation of effects on pain outcomes.

A CUTE postoperative pain is an undesirable outcome that can delay functional recovery for patients undergoing surgical procedures. Multimodal analgesic approaches...
have been used as an important strategy to mitigate postoperative pain.\(^1\) The effectiveness of adjunct agents, including ketamine,\(^2\) gabapentin,\(^3\) paracetamol, and nonsteroidal antiinflammatory drugs,\(^4\) have been examined in systematic reviews that demonstrate their benefits in reducing postoperative pain and/or opioid consumption. These agents became useful multimodal analgesic strategies.\(^5\) Dexamethasone is a corticosteroid commonly used perioperatively to reduce postoperative nausea and vomiting\(^6\) and may have a beneficial role in postoperative analgesia. However, in a systematic review of dexamethasone after laparoscopic cholecystectomy, the postoperative analgesic effect of dexamethasone, examined as a secondary outcome was found to be inconclusive.\(^7\) Therefore, the effect of dexamethasone on postoperative pain as well as the optimal dose to reduce pain has not been clearly defined. Currently, dexamethasone is not recommended as a component of a multimodal drug strategy to decrease postsurgical pain.

The objective of this quantitative systematic review was to assess the efficacy and dose dependency of single-dose perioperative dexamethasone on postsurgical pain outcomes. We also evaluated the dose-dependent side effects of single dose dexamethasone in the perioperative period.

Materials and Methods

This quantitative systematic review was conducted following the guidelines of the PRISMA statement.\(^8\)\(^9\)

Systematic Search

Published reports of randomized trials evaluating the effects of dexamethasone on surgical postoperative pain were searched using the National Library of Medicine’s PubMed database, the Cochrane Database of Systematic Reviews, and Google Scholar inclusive to September 1, 2010. Free text and MeSH terms “dexamethasone,” “pain,” “postoperative,” “preoperative,” “analgesia,” and “opioid” were used individually and in various combinations. No language restriction was used. The search was limited to randomized controlled clinical trials in subjects older than 18 yr. An attempt to identify additional studies not found by the primary search methods was made by reviewing the reference lists from identified studies. No search was performed for unpublished studies. This initial search yielded 211 randomized clinical trials.

Selection of Included Studies

The study’s inclusion and exclusion criteria were determined before the systematic search. Two authors (GDO and MDA) independently evaluated the abstract and results of the 211 articles obtained by the initial search. Articles that were clearly not relevant based on our inclusion and exclusion criteria were excluded at this phase. Disagreements on inclusion of the articles were resolved by discussion among the evaluators. If an agreement could not be reached, the dispute was resolved with the help of a third investigator (HTB).

Inclusion and Exclusion Criteria

We included randomized controlled trials of a single perioperative intravenous dexamethasone administration with an inactive (placebo or “no treatment”) control group. Excluded were trials reporting analgesia after emergency medicine, dental, and nonsurgical pain. Trials evaluating more than one dose of perioperative dexamethasone were also excluded to maximize clinical homogeneity. Studies containing a concurrent use of an alternative multimodal analgesia regimen were excluded if a direct comparison of dexamethasone and placebo could not be established. Included studies had to report at least pain scores or opioid consumption on postoperative pain outcomes. No minimum sample size was required for inclusion in the meta-analysis.

Validity Scoring

Two authors (GSD and MDA) independently read the included reports and assessed their methodologic validity using a modified Jadad five-point quality scale.\(^3\) The scale evaluates the study for the following: randomization, double-blind evaluation, concealment of study group to evaluator, valid randomization method, and completeness of data at follow-up. Discrepancies in rating of the trials were resolved by discussion among the evaluators. If an agreement could not be reached, the dispute was resolved with the help of a third investigator (HTB). Because only randomized trials were included in the analysis, the minimum possible score of an included trial was 1 and the maximum was 5. Trials were not excluded or weighted in the analysis based on quality assessment scores.

Data Extraction

Two authors (GDO and MDA) independently evaluated the full manuscripts of all included trials and performed data extraction using a data collection form specifically developed for this review. Discrepancies were resolved by discussion between the two investigators (GDO and MDA). If an agreement could not be reached between the two investigators, the decision was made by a third investigator (HTB). Data extracted from trials included dexamethasone dose and time of administration, sample size, number of subjects in treatment groups, follow-up period, type of surgery, early pain scores (≤4 h) at rest and at movement, late pain scores (24 h) at rest and at movement, cumulative opioid consumption, time to opioid administration (minutes), length of hospital stay (hours), and adverse events. Postoperative opioid consumption was converted to the equivalent dose of intravenous morphine.\(^10\) Visual analog scale or numeric rating scale of pain were converted to a 0–10 numeric rating scale.

Data were initially extracted from tables. For data not available in tables, attempts to contact authors were made; if the authors did not respond or did not have current contact information, the data were abstracted from available figures. Dichotomous data on the presence or absence of adverse effects was extracted and converted to incidence while continuous data were recorded using mean and SD. Data pre-
sented only as median and range were converted to means and SD using previously described methodology. When required, the SD for pain scores was estimated using the most extreme values. The most conservative value was used when the same outcome was reported more than one time for a determined period. Dexamethasone dose was converted to units in mg/kg using the mean weight reported for the dexamethasone groups. When no information about group weight was available, 70 kg was used.

To facilitate a quantitative analysis and to examine dose dependency of the outcomes, comparisons were stratified by dose into three groups: low-dose (0.10 mg/kg), intermediate-dose (0.11–0.20 mg/kg), and high-dose (0.21 mg/kg) dexamethasone. The dosage ranges were derived from clinical guidelines for postoperative nausea and vomiting that favor low dose compared with intermediate dose dexamethasone for antiemetic prophylaxis. The high-dose group represents doses greater than those routinely used for antiemetic prophylaxis.

Definition of Relevant Outcome Data

Primary Outcomes. Early acute postoperative pain scores (visual analog scale or numeric rating scale) at rest and at movement (0–4 h postoperatively); late acute postoperative pain scores (visual analog scale or numeric rating scale) at rest and at movement (24 h postoperatively); and cumulative opioid consumption (up to 24 h) in the postoperative period.

Secondary Outcomes. The time to first analgesic administration (minutes); time to hospital discharge (hours); and incidence and severity (visual analog scale or numeric rating scale) scores of chronic pain. In addition, adverse events including postoperative infection (wound, urinary tract, and pneumonia), hyperglycemic events, delayed healing, and pruritus were examined.

Meta-analyses

The standardized mean differences with 95% CI were determined and reported for continuous data. For dichotomous data (adverse effects), the Peto odds ratio (to account for the potential of zero counts in the cells for low-frequency outcomes) and 95% CI are reported. A significant effect compared with placebo required that the 95% CI for continuous data did not include 0 and for dichotomous data, the CI did not include 1.0. We calculated number needed to harm, based on the absolute risk reduction, with 95% CI as an estimate of a harmful effect. We used the lower 95% CI estimate of the number needed to harm to describe the largest increase in adverse events that could be excluded by our analysis. Because of the different surgical procedures, we used a random effect model in an attempt to generalize our findings to studies not included in our meta-analysis. Publication bias was evaluated by examining for asymmetric funnel plots using the Egger regression test. A one-sided P < 0.05 was considered an indication of an asymmetric funnel plot. A file drawer analysis described by Rosenthal was performed in the case of an asymmetric funnel plot. The test estimates the lowest number of additional studies that if they would become available would reduce the combined effect to nonsignificance assuming the average z-value of the combined P values of these missing studies would be 0. Sensitivity analysis was also performed to assess the effect of the elimination of a single trial on the outcome of the analysis.

Heterogeneity of the included studies was considered to be present if the I^2 statistic was greater than 30%. Further analysis was planned a priori to explore relevant heterogeneity. Subgroup analysis was performed to investigate the effect of time of dexamethasone administration (preoperative vs. intraoperative) on the pain outcomes. A Q statistic was used to compare the effects between subgroups. The proportion of the total variance explained by the covariates (R^2) was calculated by dividing random effects pooled estimates of variance (τ squared) within studies by total variance (total τ squared). The value obtained was then subtracted from 1. When values fall outside the range of 0–100%, they were set to the closest value (0% or 100%). Comparisons between the different doses of dexamethasone and were made using a Z test with Bonferroni correction for multiple comparisons. Analysis was performed using Comprehensive Meta-analysis software version 2 (Biostat, Englewood, NJ).

Results

Of the 211 initially evaluated abstracts, 38 studies initially met the inclusion criteria (fig. 1). Fourteen studies were subsequently excluded: 12 either had no acute pain outcomes,
Table 1. Summary of Studies Included in Analysis

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year of Publication</th>
<th>Procedures</th>
<th>Number Treatment/Control</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Quadah et al.</td>
<td>2010</td>
<td>Nasal sinus endoscopy</td>
<td>32/30</td>
<td>Dexamethasone 8 mg IV at induction</td>
</tr>
<tr>
<td>Sánchez-Rodríguez et al.</td>
<td>2010</td>
<td>Laparoscopic cholecystectomy</td>
<td>105/105</td>
<td>Dexamethasone 8 mg IV 60 min preoperatively</td>
</tr>
<tr>
<td>Thangaswamy et al.</td>
<td>2010</td>
<td>Laparoscopic hysterectomy</td>
<td>36/19</td>
<td>Dexamethasone 4 mg and 8 mg IV 2 h preoperatively</td>
</tr>
<tr>
<td>Fukami et al.</td>
<td>2009</td>
<td>Laparoscopic cholecystectomy</td>
<td>40/40</td>
<td>Dexamethasone 8 mg IV 90 min before surgery</td>
</tr>
<tr>
<td>Jokela et al.</td>
<td>2009</td>
<td>Laparoscopic hysterectomy</td>
<td>120/30</td>
<td>Dexamethasone 5 mg, 10 mg and 15 mg IV before induction</td>
</tr>
<tr>
<td>Yeo et al.</td>
<td>2009</td>
<td>Middle ear surgery</td>
<td>40/40</td>
<td>Dexamethasone 10 mg IV after induction</td>
</tr>
<tr>
<td>Kardash et al.</td>
<td>2008</td>
<td>Total hip arthroplasty</td>
<td>25/25</td>
<td>Dexamethasone 40 mg IV intraoperative</td>
</tr>
<tr>
<td>Worni et al.</td>
<td>2008</td>
<td>Thyroidectomy</td>
<td>37/35</td>
<td>Dexamethasone 8 mg IV 45 min preoperatively</td>
</tr>
<tr>
<td>Bianchin et al.</td>
<td>2007</td>
<td>Laparoscopic cholecystectomy</td>
<td>36/37</td>
<td>Dexamethasone 8 mg IV 2min before induction</td>
</tr>
<tr>
<td>Hval et al.</td>
<td>2007</td>
<td>Breast segmental mastectomy</td>
<td>50/50</td>
<td>Dexamethasone 16 mg IV after induction</td>
</tr>
<tr>
<td>Wu et al.</td>
<td>2007</td>
<td>Anorectal surgery</td>
<td>30/30</td>
<td>Dexamethasone 5 mg IV before surgery</td>
</tr>
<tr>
<td>Aminmansour et al.</td>
<td>2006</td>
<td>Lumbar discectomy</td>
<td>39/22</td>
<td>Dexamethasone 40 mg or 80 mg IV–time not specified</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2006</td>
<td>Orthopedic, otolaryngologic, ophthalmologic, laparoscopic, laparotomy</td>
<td>350/350</td>
<td>Dexamethasone 10 mg before induction</td>
</tr>
<tr>
<td>Feo et al.</td>
<td>2005</td>
<td>Laparoscopic cholecystectomy</td>
<td>49/52</td>
<td>Dexamethasone 8 mg 90 min before surgery</td>
</tr>
<tr>
<td>McKean et al.</td>
<td>2005</td>
<td>Tonsillectomy</td>
<td>24/22</td>
<td>Dexamethasone 10 mg IV after induction</td>
</tr>
<tr>
<td>Bisgaard et al.</td>
<td>2003</td>
<td>Laparoscopic cholecystectomy</td>
<td>40/40</td>
<td>Dexamethasone 8 mg IV 90 min preoperatively</td>
</tr>
<tr>
<td>Coloma et al.</td>
<td>2002</td>
<td>Laparoscopic cholecystectomy</td>
<td>70/70</td>
<td>Dexamethasone 4 mg IV at induction</td>
</tr>
<tr>
<td>Elhakim et al.</td>
<td>2002</td>
<td>Laparoscopic cholecystectomy</td>
<td>120/30</td>
<td>Dexamethasone 4 mg, 8 mg, 16 mg before induction</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>2002</td>
<td>Gynecologic laparoscopy</td>
<td>83/84</td>
<td>Dexamethasone 8 mg before induction</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>2002</td>
<td>Laparoscopic cholecystectomy</td>
<td>38/39</td>
<td>Dexamethasone 5 mg IV after induction</td>
</tr>
<tr>
<td>Coloma et al.</td>
<td>2001</td>
<td>Anorectal surgery</td>
<td>40/40</td>
<td>Dexamethasone 4 mg IV intraoperative</td>
</tr>
<tr>
<td>Carr et al.</td>
<td>1999</td>
<td>Tonsillectomy</td>
<td>15/14</td>
<td>Dexamethasone 20 mg IV intraoperatively</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>1999</td>
<td>Laparoscopic cholecystectomy</td>
<td>40/38</td>
<td>Dexamethasone 8 mg IV before induction</td>
</tr>
<tr>
<td>McKenzie et al.</td>
<td>1997</td>
<td>Major gynecologic surgery</td>
<td>40/40</td>
<td>Dexamethasone IV 20 mg after induction</td>
</tr>
</tbody>
</table>

† Means and SDs for data used in analysis were extracted from tables and or text unless specified. ‡ Means and/or SDs were estimated from median and or range.
IM = intramuscularly; IV = intravenously; PCA = patient-controlled analgesia; po = per oral; PRN = as needed; q = every; SC = subcutaneously.
Table 1. Continued

<table>
<thead>
<tr>
<th>Type of Anesthesia</th>
<th>Postoperative Analgesia</th>
<th>Modified Jadad Score (1–5)</th>
<th>Method of Data Extraction†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fentanyl/propofol/isoflurane</td>
<td>Acetaminophen 1g po q 6 hr + tramadol (IM) PRN</td>
<td>4</td>
<td>Table/Figure</td>
</tr>
<tr>
<td>Fentanyl/propofol</td>
<td>Ketorolac 30 mg IV q 8 hr + buprenorphine (0.15–0.30 mcg) PRN</td>
<td>3</td>
<td>Table/text</td>
</tr>
<tr>
<td>Fentanyl/propofol/N₂O/isoflurane</td>
<td>Fentanyl PCA</td>
<td>5</td>
<td>Figure/text</td>
</tr>
<tr>
<td>Fentanyl/propofol/N₂O/sevoflurane</td>
<td>Diclofenac sodium 50 mg per rectum PRN</td>
<td>3</td>
<td>Table/text</td>
</tr>
<tr>
<td>Remifentanil/propofol/sevoflurane</td>
<td>Oxydodone PCA</td>
<td>5</td>
<td>Table/Figure</td>
</tr>
<tr>
<td>Propofol/isoflurane/N₂O</td>
<td>Ketorolac 30 mg IV q 6 h</td>
<td>4</td>
<td>Table/text</td>
</tr>
<tr>
<td>Spinal, L2-L3, 15 mg 0.5% bupivacaine</td>
<td>PCA morphine, acetaminophen 650 mg po q 6 h and ibuprofen 400 mg po q 6 h</td>
<td>5</td>
<td>Table/text</td>
</tr>
<tr>
<td>Fentanyl/propofol/thiopental/isoflurane/sevoflurane</td>
<td>Acetaminophen 4g + metamizole + morphine IV or SC</td>
<td>5</td>
<td>Figure/text</td>
</tr>
<tr>
<td>Fentanyl/propofol/N₂O/sevoflurane</td>
<td>Ketorolac 30 mg IV</td>
<td>5</td>
<td>Table/text‡</td>
</tr>
<tr>
<td>Remifentanil/fentanyl/profopol</td>
<td>Oxydodone 5 mg po</td>
<td>5</td>
<td>Figures/text</td>
</tr>
<tr>
<td>Propofol/sevoflurane/N₂O</td>
<td>Ketorolac 30 mg IV + meperidine 12.5–25 mg IV</td>
<td>4</td>
<td>Table/text</td>
</tr>
<tr>
<td>Anesthetic regimen not standardized</td>
<td>Morphine SC</td>
<td>3</td>
<td>Table/text</td>
</tr>
<tr>
<td>Fentanyl/propofol/sevoflurane</td>
<td>Meperidine 50 mg IM q 4 hr PRN</td>
<td>4</td>
<td>Table/text</td>
</tr>
<tr>
<td>Fentanyl/propofol/sevoflurane</td>
<td>Acetaminophen 1 g IV q 6 h + ketoprofen PRN</td>
<td>3</td>
<td>Figures/text</td>
</tr>
<tr>
<td>Morphine/profoponol/N₂O/isoflurane</td>
<td>Acetaminophen 1 g PO q 6 h + diclofenac 50 mg PO q 8 h</td>
<td>5</td>
<td>Tables/text‡</td>
</tr>
<tr>
<td>Fentanyl/profoponol</td>
<td>Ibuprofen 600 mg po q 8 h + morphine 5–10 mg IV</td>
<td>5</td>
<td>Figures/table/text</td>
</tr>
<tr>
<td>Fentanyl/profoponol/sevoflurane</td>
<td>Fentanyl 25mcg PRN pain</td>
<td>3</td>
<td>Table/text</td>
</tr>
<tr>
<td>Fentanyl/profoponol/N₂O/isoflurane</td>
<td>Nalbuphine 20 mg IM q 4 hr PRN</td>
<td>4</td>
<td>Table/text</td>
</tr>
<tr>
<td>Fentanyl/thiopental/sevoflurane</td>
<td>Ketorolac 15 mg IV</td>
<td>3</td>
<td>Table/text</td>
</tr>
<tr>
<td>Fentanyl/profoponol/isoflurane</td>
<td>Tenoxicam 20 mg q 12 hr IV</td>
<td>5</td>
<td>Author</td>
</tr>
<tr>
<td>Sedation: midazolam, propofol, ketorolac, fentanyl, and local infiltration</td>
<td>Hydrocodone 2.5 mg –acetaminophen 500 mg</td>
<td>2</td>
<td>Table/text</td>
</tr>
<tr>
<td>Not described</td>
<td>Codeine elixir q 4 hr PRN</td>
<td>5</td>
<td>Figure</td>
</tr>
<tr>
<td>Fentanyl/profoponol/isoflurane</td>
<td>Morphine PCA IV</td>
<td>5</td>
<td>Table/text</td>
</tr>
<tr>
<td>Fentanyl/profoponol/N₂O/isoflurane</td>
<td>Morphine IV PCA</td>
<td>4</td>
<td>Table/text‡</td>
</tr>
</tbody>
</table>
The characteristics of included studies are listed in table 1. The evaluated trials included data from 2,751 subjects and were published between 1997 and 2010. The median number of patients in the included studies receiving dexamethasone was 40. The median modified Jadad scale score was 4. The trials tested a single dose of dexamethasone given either preoperatively or intraoperatively in a large variety of surgical procedures. All 24 studies reported on opioid consumption and/or pain scores. Six studies reported pain scores for both rest and activity.

Early (0–4 h) Pain at Rest

The overall effect of dexamethasone on early pain at rest compared with placebo favored dexamethasone with a mean difference (95% CI) of $-0.32 ((-0.46 to -0.17)$ (fig. 2). The funnel plot did not demonstrate asymmetry, indicating that there was not substantial publication bias ($P = 0.43$) (fig. 3).

The aggregate effect of the six studies evaluating low-dose dexamethasone on early pain at rest did not achieve statistical significance at $-0.33 ((-0.70 to 0.04)$ of dexamethasone compared with placebo (fig. 2). All the studies assessed dexamethasone given intraoperatively. Post hoc sensitivity analysis demonstrated that removal of the study of Thangaswamy et al. would change the analysis to result in a significant effect of $-0.42 ((-0.81 to -0.03)$ for low-dose dexamethasone compared with placebo.

The effect of the combined 11 studies examining the effect of intermediate-dose dexamethasone on early pain at rest suggests a decrease in early pain of $-0.33 ((-0.52 to -0.13)$ compared with placebo. There was no difference in the effect of time of drug administration on early pain and 38% of the total variance in the effect was explained by the time of drug administration.
The heterogeneity for studies evaluating the preoperative administration was low ($I^2 = 0$) but it was high for studies examining the intraoperative administration of the drug ($I^2 = 77$).

Five studies evaluated the effect of high-dose dexamethasone on early postoperative pain at rest. One study provided two comparisons that were included in the analysis. There was a beneficial effect of dexamethasone on early pain of $-0.29 (-0.57$ to $-0.02)$. Dexamethasone was administered intraoperatively in all of these studies. No difference in effectiveness was found among the dexamethasone groups on early pain at rest.

Early (0–4 h) Pain at Movement

The overall effect of dexamethasone on early pain at movement compared with placebo favored dexamethasone with a mean difference (95% CI) of $-0.64 (-0.86$ to $-0.41)$ (fig. 4) The funnel demonstrated some asymmetry ($P = 0.04$, one-sided) with one of the seven studies outside the 95% CI, indicating some heterogeneity favoring dexamethasone; however, the low number of studies limits the potential for evaluating substantial publication bias.

Fig. 3. Early pain at rest funnel plot assessing publication bias. Plotted is the SE versus standard difference in mean (Effects). Vertical line is the combined effect for early pain, with diagonal lines representing the expected 95% CI from the combined effect. Studies outside the funnel indicate heterogeneity. Eggers regression suggests absence of asymmetry ($P = 0.43$, one-sided).

Fig. 4. Pooled data evaluating the effect of dexamethasone dose on early pain scores (4 h or less) with movement compared with placebo. Data evaluated using a random effects model. Point estimate (95% CI) for overall effect was $-0.64 (-0.86$ to $-0.41)$. Standardized mean difference for individual study represented by square on Forrest plot with 95% CI of the difference shown as solid line. Larger sized circle and thicker 95% CI line denote larger sample size. The diamond represents the pooled estimate and uncertainty for the effects of low- (0.1 mg/kg or less), intermediate- (0.11–0.2 mg/kg), and high-dose (more than 0.2 mg/kg) dexamethasone, respectively. Sample heterogeneity as assessed by the I^2 for the low-, intermediate-, and high-dose grouping of studies was 0, 0 and 74, respectively.

Fig. 5. Early pain at movement funnel plot assessing publication bias. Plotted is the SE versus standard difference in mean (Effects). Vertical line is the combined effect for early pain, with diagonal lines representing the expected 95% CI from the combined effect. Studies outside the funnel indicate heterogeneity. The funnel demonstrated some asymmetry ($P = 0.04$, one-sided) with one of the seven studies outside the 95% CI indicating some heterogeneity favoring dexamethasone; however, the low number of studies limits the potential for evaluating substantial publication bias.
Two studies evaluated the effect of low-dose dexamethasone on early movement pain, showing a reduction when compared with placebo, $-0.43 (-0.84$ to $-0.03)$. Three studies assessed the effect of moderate-dose dexamethasone on early movement pain, showing a reduction when compared with placebo, $-0.65 (-0.96$ to $-0.35)$. Two studies evaluating high dose dexamethasone on early movement also demonstrated a decrease in pain when compared with placebo, $-1.09 (-1.77$ to $-0.42)$. There was no difference between the effects of different doses of dexamethasone on early movement.

Late (24 h) Pain at Rest

The overall effect of dexamethasone on late pain at rest compared with placebo was $-0.49 (-0.67$ to $-0.31)$ (fig. 6). The funnel demonstrated moderate asymmetry ($P = 0.01$) with 5 of the 25 studies outside the 95% CI with 24 studies favoring placebo and 1 study favoring dexamethasone (fig. 7).

The effects of dexamethasone (compared with placebo) on late pain at rest by dosing groups is presented in figure 6. Five studies examined the effects of low-dose dexamethasone on late pain at rest. $-0.47 (-0.68$ to $-0.25)$ was observed. There was no evidence of asymmetry in the funnel plot ($P = 0.15$).

Twelve studies evaluated the effect of intermediate-dose dexamethasone on late pain at rest. $-0.41 (-0.80$ to $-0.03)$ was observed. There was no evidence of asymmetry in the funnel plot ($P = 0.09$). There was a greater effect when dexamethasone was given preoperatively, $-0.77 (-0.95$ to $-0.09)$ compared with intraoperative administration, $-0.007 (-0.12$ to $-0.11)$ ($P < 0.001$).

The six studies examining the effect of high-dose dexamethasone on late pain at rest demonstrated a...
A decrease in pain of -1.0 (-1.77 to -0.26) compared with placebo. There was no evidence of asymmetry on the funnel plot ($P = 0.14$). All studies assessed dexamethasone given intraoperatively. There was no difference in the effect on late pain when the high-dose dexamethasone was compared with the moderate- ($P = 0.13$) or the low-dose ($P = 0.14$) groups.

Late Pain at Movement

The overall effect of dexamethasone on late pain at movement compared with placebo favored dexamethasone with a mean difference (95% CI) of -0.47 (-0.71 to -0.24) (fig. 8). The funnel demonstrated asymmetry ($P = 0.003$) with one study favoring dexamethasone outside the 95% CI (fig. 9).

Three studies examined the effect of low-dose dexamethasone. One of the studies provided data for two comparisons and both were included in the analysis. Low-dose dexamethasone demonstrated a reduction of -0.39 (-0.66 to -0.12) in late pain at movement. There was no evidence of asymmetry on the funnel plot ($P = 0.43$).

Four studies examining the effect of moderate-dose dexamethasone also showed a reduction in pain of -0.52 (-1.02, -0.03). However, the analysis was limited by asymmetry ($P = 0.05$). Rosenthal analysis predicted that 14 missing studies would be required to change the analysis. There was no difference in the influence of time of drug administration on the dexamethasone effects ($P = 0.45$), with 18% of the total accounted variance due to time of administration. There was high heterogeneity in the effect when the drug was administered intraoperatively ($I^2 = 89$) and low heterogeneity when the drug was administered preoperatively ($I^2 = 0$).

Four studies evaluated the effect of high-dose dexamethasone on late pain at movement, demonstrating a reduction in pain of -3.16 (-4.95 to -1.38). The analysis...
was potentially affected by asymmetry of the sample \((P = 0.01) \), indicating a publication bias for positive studies. Rosenthal analysis suggested that 104 missing studies would be needed to increase the \(P \) value above 0.05. Post hoc sensitivity analysis demonstrated that removal of the Kasbash et al. study would result in a change in the effect of the high-dose dexamethasone group on late pain to \(-0.84 (-1.12 \text{ to } -0.56) \) when compared with placebo. With the Kasbash et al. study included high-dose dexamethasone showed improvement in late pain at movement compared with the low \((P = 0.003) \) or intermediate \((P = 0.004) \) dose; whereas with the Kasbash et al. study removed high-dose dexamethasone showed improvement in late pain at movement compared with the low \((P = 0.01) \) but not intermediate \((P = 0.26) \) dose.

Postoperative Opioid Consumption

The overall effect of dexamethasone on postoperative opioid consumption compared with placebo favored dexamethasone with a mean difference (95% CI) of \(-0.41 (-0.58 \text{ to } -0.24)\) (fig. 10). The funnel plot did not demonstrate asymmetry indicating that there was not substantial publication bias \((P = 0.35) \) (fig. 11).

Four studies evaluated the effect of low-dose dexamethasone on postoperative opioid consumption. One study provided data for two comparisons, and both were included in the analysis. No difference in opioid consumption compared with placebo was found at \(-0.17 (-0.38 \text{ to } 0.03)\). All of the studies evaluated dexamethasone administered during the intraoperative period.

Nine studies examined the effect of moderate dose dexamethasone on postoperative opioid consumption demonstrating an opioid-sparing effect of \(-0.82 (-1.22 \text{ to } -0.42)\) compared with placebo. Moderate-dose dexamethasone also decreased opioid consumption compared with low dose \((P = 0.003) \). When given in the preoperative period, the mean effect of dexamethasone on opioid consumption was \(-0.9 (-1.15 \text{ to } -0.72)\) compared with \(-0.48 (-1.04 \text{ to } -0.07)\) when given intraoperatively \((P = 0.1) \), suggesting an advantage for preoperative administration. In addition, 46% of the between-studies variation in effect was due to the time of drug administration.

Five studies assessed the effects of high-dose dexamethasone on postoperative opioid consumption. One study provided data for two comparisons, and both were included in the analysis. There was a reduction in postoperative opioid consumption of \(-0.84 (-1.24 \text{ to } -0.45)\) compared with placebo. All studies included in the analysis evaluated dexamethasone administrated intraoperatively. High-dose dexamethasone reduced opioid consumption compared with low dose \((P = 0.002) \), but there was no difference in the opioid-sparing effect when comparing moderate-dose and high-dose dexamethasone \((P = 0.94) \).

Chronic Pain (3 Months or Longer)

None of the included studies reported on chronic pain.

Time to First Analgesic Administration (Minutes)

Four studies evaluated the effects of low-dose dexamethasone on time to analgesic administration. One study provided data for two comparisons, and both were included in the analysis. There was a prolongation of the time to analgesic requirement when the low-dose dexamethasone group was compared with placebo at \(-0.70 (0.01\text{ to } 1.39)\). There was no evidence of an asymmetric funnel plot \((P = 0.07) \). The studies demonstrated high heterogeneity \((I^2 = 89) \) but the between-studies variability could not be explained by the time of drug administration.

Three studies evaluated the effect of intermediate-dose dexamethasone on time to analgesic requirement showing no effect on the time to analgesic requirement: \(1.09 (-0.2 \text{ to } 2.41) \). There was no evidence of asymmetric funnel plots \((P = 0.21) \). The analysis was limited by high heterogeneity that could not be explained by time of administration of dexamethasone \((I^2 = 92) \). Only two studies evaluated the effect of high-dose dexamethasone on time to analgesic re-

Fig. 9. Late pain (24 h) at movement funnel plots assessing publication bias. Plotted is the SE versus standard difference in mean (Effects). Vertical line is the combined effect for early pain, with diagonal lines representing the expected 95% CI from the combined effect. Studies outside the funnel indicate heterogeneity. (A) Funnel plot for dexamethasone less than 0.1 mg/kg. There was no evidence of asymmetry on the funnel plot \((P = 0.43, \text{ one-sided}) \). (B) Funnel plot for intermediate dose dexamethasone (0.11–0.2 mg/kg) and late pain with movement. Eggers regression demonstrated some asymmetry \((P = 0.05, \text{ one-sided}) \) with one study lying outside of the 95% CI. (C) Funnel plot for high-dose dexamethasone (more than 0.2 mg/kg) and late pain with movement. Eggers regression demonstrated asymmetry \((P = 0.01, \text{ one sided}) \) with one study lying outside of the 95% CI.

Anesthesiology 2011; 115:575–88

Copyright © by the American Society of Anesthesiologists. Unauthorized reproduction of this article is prohibited.
requirement, showing no delay on the time to analgesic requirement: 0.72 (−0.70 to 2.14). The analysis was limited by the low number of studies and high heterogeneity ($I^2 = 92$). Both studies evaluated dexamethasone given during the intraoperative period.

Time to Hospital Discharge (Hours)

Five studies examined the effect of low-dose dexamethasone on time to hospital discharge compared with placebo. One study provided data for two comparisons, and both were included in the analysis. The combined data showed a decrease in time to hospital discharge: −0.47 (−0.72 to −0.2). The analysis was limited by the presence of an asymmetric funnel plot ($P = 0.04$), with Rosenthal analysis suggesting 30 missing studies would be needed to change the results.

Six studies assessed the effect of moderate-dose dexamethasone compared with placebo on time to hospital discharge. There was a reduction in time to discharge: −0.47 (−0.91 to −0.04), and no evidence of an asymmetric funnel plot ($P = 0.40$). Heterogeneity was high ($I^2 = 89$), with 16% of the total variance attributable to the time of drug administration. Only one study that evaluated the effect of high-dose dexamethasone on the time to hospital discharge demonstrated a 5.5-h reduction when compared with placebo ($P < 0.001$).

Safety Analysis

Among the studies evaluating low dose dexamethasone, two did not comment on adverse side effects. Three studies reported no difference in adverse side effects.
specifically reported no difference in postoperative wound infection, and one study specifically reported no cases with delayed wound healing. One study reported no difference in changes of blood glucose between the dexamethasone and placebo group.

Among studies evaluating moderate doses of dexamethasone, two did not report on side effects, two reported no differences in adverse side effects, eight specifically reported no cases of postoperative wound infection, and one reported the same incidence of wound infection in the dexamethasone and placebo groups, resulting in a 0.2% (0.05% to 1%) incidence of postoperative infection for both the dexamethasone and placebo groups. These numbers resulted in an overall risk difference (95% CI) of 0% (−1.2% to 1.2%) between the moderate dose dexamethasone group and saline. The lower estimate of the 95% CI of the number needed to harm is 83, therefore indicating that we can exclude one additional case of wound infection in fewer than 83 patients. Two studies reported no difference in change of blood glucose and four studies specifically reported no differences in wound healing.

Among studies evaluating high-dose dexamethasone, one study did not comment on side effects, two reported no cases of serious side effects, one specifically reported no cases of wound infection or delayed wound healing, and one trial reported a single case of wound infection in the placebo group and no case in the dexamethasone groups. These numbers resulted in an overall risk difference (95% CI) of 0.3% (−2.5% to 3.1%). The lower estimate of the number needed to harm is 32, indicating that we can rule out one additional case of wound infection in fewer than 32 patients. Three studies showed no decrease in the odds ratio (95% CI) for pruritus: 0.72 (0.2 to 2.1) compared with placebo.

Discussion
Several important findings emerged from our meta-analysis. First, intermediate-dose dexamethasone (0.11–0.2 mg/kg) had opioid-sparing effects. It also reduced early and late pain both at rest and at movement. Heterogeneity was partially explained by the time of drug administration (preoperative vs. intraoperative). High-dose dexamethasone (more than 0.2 mg/kg) had opioid-sparing effects and also decreased pain scores. We were unable to detect a difference in opioid use for the low-dose dexamethasone (less than 0.1 mg/kg) when given intraoperatively despite a reduction in late pain at rest and at movement. There is evidence that a single perioperative systemic dexamethasone dose can be used as part of a multimodal pain strategy to reduce postoperative pain.

Our findings have important clinical implications because lower dose dexamethasone is commonly given intraoperatively at the time of anesthesia induction to reduce postoperative nausea and vomiting. By giving intermediate doses of dexamethasone (0.11–0.2 mg/kg), beneficial effects on postoperative pain and a reduction in opioid consumption in addition to decreased nausea and vomiting can be achieved. The decreased variability in analgesic effectiveness when moderate-dose dexamethasone was administered preoperatively favors preoperative rather than intraoperative administration of the drug. This finding is consistent with the time to peak effect of dexamethasone (45 min to 1 h). A potential limitation to the preoperative administration of dexamethasone is that it can frequently (50–70%) produce extreme perineal pain when given rapidly in low volumes. This effect can be avoided if the dexamethasone dose is diluted in 50 ml saline solution and infused over 10 min.

In a comparison, the high-dose dexamethasone group reduced late pain at movement compared with the intermediate dose, but did not show a significant advantage in opioid-sparing effects, early pain at rest and at movement, and late pain at rest. Dexamethasone was administered intraoperatively for all of the studies evaluating the high-dose group, which limited our ability to investigate the influence of the time of drug administration on the outcome measures. In regard to early pain at rest, the three dexamethasone groups had similar point estimate reductions, but we were unable to demonstrate a statistically significant effect for the low dose group.

Our review provided evidence that a single dose of perioperative dexamethasone did not increase dose-limiting complications such as wound infection nor does it appear to delay wound healing. This conclusion is strongest for the moderate doses of dexamethasone because there are greater numbers of patients studied at this dosing level. Our study corroborates the safety assessment regarding postoperative wound infection and healing in a systematic review evaluating a single dose of a different corticosteroid (methylprednisolone). Because we included several procedures and not only contaminated surgeries, our findings cannot be generalized to patients at high risk of developing postoperative wound infection. Blood glucose alterations were specifically mentioned in only two studies, limiting any safety assessment on this important side effect.

Time to hospital discharge, an important outcome due to its economic implications and affected by the presence of postoperative pain, showed a similar positive effect in both low-dose and intermediate-dose groups. The analysis, however, was limited by the presence of publication bias in the low dexamethasone group, and by high heterogeneity in the moderate-dose group. It is conceivable that further reduction in postoperative pain could affect discharge time, although we were unable to demonstrate this in our current analysis.

Our meta-analysis had several limitations. In an attempt to generalize our findings to different surgical procedures, we included different types of surgeries that may have affected the heterogeneity in some of our analyses. Varying methods of postoperative pain management across the studies were another potential source of heterogeneity. We could not demonstrate a decrease in opioid-related side effects as
Anesthesiology 2011; 115:575–88 De Oliveira, Jr. et al.

References

