Perineural Dexmedetomidine Added to Ropivacaine for Sciatic Nerve Block in Rats Prolongs the Duration of Analgesia by Blocking the Hyperpolarization-activated Cation Current

Chad M. Brummett, M.D.,* Elizabeth K. Hong, B.S.,† Allison M. Janda, B.A.,† Francesco S. Amodeo, B.S.,‡ Ralph Lydic, Ph.D.§

ABSTRACT

Background: The current study was designed to test the hypothesis that the increased duration of analgesia caused by adding dexmedetomidine to local anesthetic results from blockade of the hyperpolarization-activated cation (Ih) current.

Methods: In this randomized, blinded, controlled study, the analgesic effects of peripheral nerve blocks using 0.5% ropivacaine alone or 0.5% ropivacaine plus dexmedetomidine (34 μM or 6 μg/kg) were assessed with or without the pre-treatment of α1- and α2-adrenoceptor antagonists (prazosin and idazoxan, respectively) and antagonists and agonists of the Ih current (ZD 7288 and forskolin, respectively). Sciatic nerve blocks were performed, and analgesia was measured by paw withdrawal latency to a thermal stimulus every 30 min for 300 min postblock.

Results: The analgesic effect of dexmedetomidine added to ropivacaine was not reversed by either prazosin or idazoxan. There were no additive or attenuated effects from the pre-treatment with ZD 7288 (Ih current blocker) compared with dexmedetomidine added to ropivacaine. When forskolin was administered as a pretreatment to ropivacaine plus dexmedetomidine, there were statistically significant reductions in duration of analgesia at time points 90–180 min (P < 0.0001 for each individual comparison). The duration of blockade for the forskolin (768 μM) followed by ropivacaine plus dexmedetomidine group mirrored the pattern of the ropivacaine alone group, thereby implying a reversal effect.

Conclusion: Dexmedetomidine added to ropivacaine caused approximately a 75% increase in the duration of analgesia, which was reversed by pretreatment with an Ih current enhancer. The analgesic effect of dexmedetomidine was not reversed by an α2-adrenoceptor antagonist.

SINGLE-SHOT peripheral nerve blocks are routinely performed as an alternative to general anesthesia and to decrease postoperative pain and opioid requirement. The most commonly used long-acting local anesthetic, ropivacaine, provides sufficient analgesia for 9–14 h.1,2 Because of the timing of the placement of most nerve blocks for surgery, many patients complain of pain for the first time during the
nighttime hours. Especially for outpatient surgery, resources for treating acute pain after the waning of a nerve block can be limited and can cause frustration for patients and clinicians. For this reason, many surgeons, anesthesiologists, and nurses recommend that patients take opioids before the waning of the nerve block to preempt the pain. Side effects of opioids can be an independent source of morbidity, causing nausea, vomiting, sedation, constipation, and sleep disturbance. Therefore, there has been considerable interest in new medications or combinations of existing medications that will allow for longer durations of analgesia to provide better postoperative pain relief, especially for the first full 24 h after surgery.

The efficacy of peripheral perineural dexmedetomidine added to bupivacaine and ropivacaine for sciatic nerve blocks in rats has been established. The increase in duration of analgesia is dose-dependent, and the effect is peripheral (i.e., not caused by centrally-mediated or systemic analgesia). Human studies in greater palatine and axillary brachial plexus nerve blocks have subsequently demonstrated that increased duration of sensory blockade can be achieved by adding dexmedetomidine to bupivacaine and levobupivacaine, respectively.

Previous studies demonstrated a peripheral site of action for dexmedetomidine, but the mechanism underlying the prolongation of sensory blockade of the peripheral nerve has heretofore been unknown. Dexmedetomidine is an agonist of the α₂-adrenoceptor. An in vitro study of frog sciatic nerve conduction with high-concentration dexmedetomidine (published after the completion of the current study) found that the reduction of the compound action potential was concentration-dependent and not α₁-mediated. Through in vivo and in vitro studies, the effects of clonidine, another α₂-adrenoceptor agonist, on the peripheral nerve were found to be likely mediated through blockade of the hyperpolarization-activated cation current (I₉ current), not because of agonism of the α₂-adrenoceptor. An in vitro study of the effects of dexmedetomidine in the paraventricular nucleus neurons found that dexmedetomidine acts in part through inhibition of the I₉ current. The current study was designed to test the hypothesis that the increased duration of analgesia from dexmedetomidine added to local anesthetic in an in vivo model of a peripheral nerve block in rat is caused by blockade of the I₉ current and not α₁- or α₂-adrenoceptor agonism.

Materials and Methods

The study followed the American Physiologic Society and National Institutes of Health guidelines and was approved by the University of Michigan Committee for the Use and Care of Animals (Ann Arbor, Michigan). Male Sprague-Dawley rats (n = 74) purchased from Charles River Laboratories (Wilmington, MA) with weights ranging from 250–300 g were housed in a 12–12 h light-dark cycle facility. Rats were allowed access to food and water ad libitum. Subjects were conditioned to the Hargreaves chamber and neurobehavioral monitoring for 60 min each morning for 1 week before surgery. Baseline paw withdrawal latency was measured 24-h before nerve injection. Measurements were again taken after nerve exposure and injection. A third set of paw withdrawal latency measures were taken 24-h later.

Drug Solutions

Pharmaceutical grade dexmedetomidine (Precedex®, Hospira Inc., Lake Forest, IL) at a concentration of 100 μg/ml, and pharmaceutical grade 0.75% ropivacaine (Naropin®, APP Pharmaceuticals, LLC, Schaumburg, IL) were used to create drug solutions. Based on a previous study, 34 μM (approximately 6 μg/kg) dexmedetomidine added to 0.5% ropivacaine significantly enhanced the duration of sensory sciatic nerve blockade, without appreciable systemic effect (no differences between treatment groups in the analgesia of the unblocked contralateral paw). Therefore, the concentration of dexmedetomidine was fixed at 34 μM in all groups, and the concentration of ropivacaine was fixed at 0.5%. Both the ropivacaine alone and ropivacaine plus dexmedetomidine groups were brought to volume with 0.9% preservative-free normal saline.

Because of the poor solubility of prazosin and forskolin in saline, dimethyl sulfoxide (DMSO) was used as the solvent for all pretreatment injections. Prazosin hydrochloride (Sigma–Aldrich, St. Louis, MO) was first dissolved in dimethyl sulfoxide to a concentration of 10 mg/ml. This was then diluted 100-fold in acidic preservative-free saline (pH 4) for a final concentration of 100 μg/ml in 1% DMSO (238.2 μM or 70.4 μg/kg). Idazoxan hydrochloride (Sigma–Aldrich) was dissolved in DMSO to a concentration of 1.5 mg/ml; a subsequent 1:100 dilution in saline yielded a final concentration of 15 μg/ml in 1% DMSO (62.3 μM or 10.56 μg/kg). ZD 7288 (Tocris Bioscience, Ellisville, MO) was diluted directly into saline with 1% DMSO to a concentration of 1.625 mg/ml (5.55 mM or 1.14 mg/kg) because of its uncomplicated solubility and to minimize waste. Forskolin (Sigma–Aldrich) was diluted in DMSO to a concentration of 15.75 mg/ml, from which a 1:100 dilution was made into saline for a final concentration of 157.5 μg/ml in 1% DMSO (384 μM or 110.9 μg/kg). Two additional dosages of forskolin were also tested, 150% and 200% the original dose, 576 μM (166.4 μg/kg) and 768 μM (221.8 μg/kg), respectively. These were diluted directly into saline with 1.5% and 2.0% DMSO, respectively. All solutions were prepared immediately before each experiment and brought to a pH of 5.69 ± 0.05.

Dosage Justifications

The dosages of prazosin and idazoxan were determined by calculating the amount of drug required to antagonize the specified 34 μM (approximately 6 μg/kg; average rat weight 284 g) dose of dexmedetomidine. The dose of prazosin selected was previously demonstrated to antagonize the analgesic effects of epinephrine added to local anesthetic (lidocaine). The dose of idazoxan selected exceeded that which antagonized the analgesic

Anesthesiology 2011; 115:836 - 43
837
Brummett et al.
Effects of epidural dexmedetomidine.16 Doses of prazosin and idazoxan were fixed at 20 \(\mu\)g and 3 \(\mu\)g per 0.2 ml injection, respectively. Therefore, each 0.2-ml injection of prazosin solution contained a concentration of 238.2 \(\mu\)M (70.4 \(\mu\)g/kg) prazosin, and each 0.2-ml injection of idazoxan solution contained 62.3 \(\mu\)M (10.56 \(\mu\)g/kg) idazoxan. The previously discussed dosages of ZD 7288 and forskolin were based on a previous in vivo sciatic nerve block study of clonidine and lidocaine.13

Surgery

Subjects were assigned to a treatment group using simple random sampling without replacement, and the experimenter (FSA) conducting the nerve block and neurobehavioral monitoring was blinded to the treatment conditions. General anesthesia was induced using 3.0% isoflurane in an acrylic chamber for subsequent neurobehavioral testing. Previous work demonstrated that \(\alpha_1\) - and \(\alpha_2\)-adrenoceptor antagonists added to local anesthetic do not have any analgesic benefit or notable sensory effects;13 therefore, prazosin and idazoxan were not studied with ropivacaine alone.

I\(_h\) Current Agonist and Antagonist Studies

The analgesic effect of peripheral perineural dexmedetomidine was previously shown to be caused by enhancement of the hyperpolarization-activated cation current (I\(_h\) current), which prevents the nerve from returning from a hyperpolarized state to resting membrane potential for subsequent firing.11,13 In the current experiments, the effects of ZD 7288 (I\(_h\) current blocker) and forskolin (I\(_h\) current enhancer) were studied individually (table 1). Previous studies have preadministered ZD 7288 60 min before the local anesthetic injection because of the long onset time.13 These studies, however, were conducted with a short-acting local anesthetic

Experiments Using \(\alpha_1\)- and \(\alpha_2\)-Adrenoceptor Antagonists

After nerve exposure, the first injection of 0.2 ml saline, 238.2 \(\mu\)M (70.4 \(\mu\)g/kg) prazosin, or 62.3 \(\mu\)M (10.56 \(\mu\)g/kg) idazoxan, was administered into the perineural space beneath the fascial plane covering the nerve and perineural tissue with a 30-g needle and tuberculin syringe under direct visualization as previously described.5–7 Ten minutes after the first injection, the second injection of 0.2 ml containing either 0.5% ropivacaine, or 34 \(\mu\)M dexmedetomidine in 0.5% ropivacaine, was injected perineurally. A suture was placed in the muscle fascia directly above the injection, and three sutures were used to close the skin incision. Isoflurane was then discontinued and the subject was returned to its cage for recovery.

Table 1. Group Assignments

<table>
<thead>
<tr>
<th>Group 1 (n = 8)</th>
<th>First Perineural Injection</th>
<th>Second Perineural Injection (10 min after First Injection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard of care</td>
<td>Saline</td>
<td>Ropiv</td>
</tr>
<tr>
<td>Group 2 (n = 7)</td>
<td>Saline</td>
<td>Ropiv + DEX</td>
</tr>
<tr>
<td>study (DEX group)</td>
<td>Prazosin (238.2 (\mu)M)</td>
<td>Ropiv + DEX</td>
</tr>
<tr>
<td>Group 3 (n = 8)</td>
<td>Idazoxan (62.3 (\mu)M)</td>
<td>Ropiv + DEX</td>
</tr>
<tr>
<td>(\alpha_1)-antagonist</td>
<td>ZD 7,288 (5.55 mM)</td>
<td>Ropiv</td>
</tr>
<tr>
<td>Group 4 (n = 8)</td>
<td>ZD 7,288 (5.55 mM)</td>
<td>Ropiv + DEX</td>
</tr>
<tr>
<td>(\alpha_2)-antagonist</td>
<td>Forskolin (768 (\mu)M)</td>
<td>Ropiv</td>
</tr>
<tr>
<td>Group 5 (n = 8)</td>
<td>Forskolin (384 (\mu)M)</td>
<td>Ropiv + DEX</td>
</tr>
<tr>
<td>(I_h) blocker</td>
<td>Forskolin (576 (\mu)M)</td>
<td>Ropiv + DEX</td>
</tr>
<tr>
<td>Group 6 (n = 7)</td>
<td>Forskolin (768 (\mu)M)</td>
<td>Ropiv + DEX</td>
</tr>
<tr>
<td>(I_h) blocker + DEX</td>
<td>Forskolin (768 (\mu)M)</td>
<td>Ropiv + DEX</td>
</tr>
<tr>
<td>Group 7 (n = 8)</td>
<td>Forskolin (768 (\mu)M)</td>
<td>Ropiv + DEX</td>
</tr>
<tr>
<td>(I_h) enhancer</td>
<td>Forskolin (768 (\mu)M)</td>
<td>Ropiv + DEX</td>
</tr>
<tr>
<td>Group 8 (n = 8, 4, 8)</td>
<td>Forskolin (768 (\mu)M)</td>
<td>Ropiv + DEX</td>
</tr>
</tbody>
</table>

In a randomized, blinded fashion, rats received two sciatic nerve blocks separated by 10 min. The effects on the duration of analgesia after nerve block were assessed. Each rat received a pretreatment (first sciatic nerve block) of one of the following: an \(\alpha_1\)- or \(\alpha_2\)-adrenoceptor antagonist; an \(I_h\) agonist; an \(I_h\) antagonist; or preservative-free saline. Blocks were achieved using either 0.5% ropivacaine alone or 0.5% ropivacaine plus a fixed dose of 34 \(\mu\)M dexmedetomidine. For group 8, three different concentrations of forskolin were studied, and the highest concentration (768 \(\mu\)M) was used for all between-group comparisons (fig. 3). DEX = dexmedetomidine; Ropiv = ropivacaine; Saline = preservative-free normal saline.
Pain Medicine

万达和两倍增加的剂量，7.2倍给药与罗比卡因发现部分逆转。作为结果，造成可能的技术失败在局部麻醉期间的后肢。0.01）。另额外两只大鼠每组包括为确保排除潜在的统计模型。时间点数据

The selected dose of 384 μM forskolin was derived from previous doses shown to antagonize the peripheral perineural analgesic effects of clonidine added to lidocaine. Preliminary data using forskolin (110.9 μg/kg) with dexmedetomidine plus ropivacaine found a partial reversal. As a result, 1.5-fold and twofold increases in the dose, 576 μM (166.4 μg/kg) and 768 μM (221.8 μg/kg) forskolin, respectively, were also studied (table 1).

Paw Withdrawal Latency Measurement

The concentration of analgesia achieved by the sciatic nerve block in the surgically treated limb was measured using thermal antinociceptive testing. The subjects were placed on an elevated glass base in the same compartments of a six-compartment acrylic chamber in which their conditioning took place (Model 400, IITC Life Science Inc., Woodland Hills, CA). The glass base was set to 30°C to minimize variations in temperature across the plate. Using a mounted mirror to see underneath the glass base, a blinded experimenter focused a beam of light (idle intensity 10%, active intensity 40%) on the plantar aspect of the hind paw of the surgically treated leg. The time between light source activation and retraction of the heated paw away from the beam of light was recorded as the paw withdrawal latency and was measured to the nearest 0.01 s by the IITC Life Science Plantar Analgesia Meter (Series 8 Model 336T, IITC Life Science Inc.). A maximum activation time of 15.0 s was set to prevent tissue damage under conditions of complete nerve blockade. The procedure was repeated on the nonsurgically treated paw to serve as a control. Three measurements were taken on each paw at every time point, and the mean values at each time point were used in the analysis. Measurements were recorded every 30 min, beginning 30 min after the second perineural injection, and were carried out to 300 min postinjection.

Statistics

A previous study demonstrated a statistically significant increase in the duration of analgesia from the addition of dexmedetomidine (34 μM) to 0.5% ropivacaine compared with ropivacaine alone. The difference in the time to return to normal sensation was 150 ± 45 min in the dexmedetomidine plus ropivacaine group versus 90 ± 21 min in the ropivacaine alone group. Based on these data, we estimated a sample size of six rats per group (two-sided, α = 0.05, β = 0.01). An additional two rats per group were included because of the potential for technical failure during the peripher-

Results

α1- and α2-Adrenoceptor Antagonists

Neither pretreatment with prazosin (α1-adrenoceptor antagonist) or idazoxan (α2-adrenoceptor antagonist) attenuated the increased duration of sensory blockade caused by the addition of dexmedetomidine to ropivacaine (fig. 1). There were significant time (P < 0.001), drug (P = 0.0028), and time-by-drug (P < 0.0001) differences for the four groups. In post hoc analyses, there were multiple individual time points of statistical significance when all of the dexmedetomidine groups were compared with the ropivacaine alone group, regardless of the pretreatment (saline, prazosin or idazoxan; P < 0.005 for each significant comparison noted in fig. 1). Only at the 210-min time point was the prazosin pretreatment group significantly different from the idazoxan pretreatment group (P = 0.0019). Otherwise, there were no significant differences between the different individual time point assessments between the three dexmedetomidine groups. There were no significant time by drug interactions found in the control (unblocked) paws between the groups (P = 0.47, control paw data not shown).

Ih, Current Antagonist (ZD 7288)

Pretreatment with ZD 7288 did not enhance or attenuate the duration of analgesia for dexmedetomidine added to ropivacaine (fig. 2). There were time (P < 0.0001), drug (P = 0.0006), and time-by-drug (P < 0.0001) effects. Post hoc analyses of time points 90–180 min between groups ZD 7288, dexmedetomidine, and the combination of ZD 7288 plus dexmedetomidine showed significant increases in the duration of analgesia compared with ropivacaine alone (P < 0.004 for each significant comparison noted in fig. 2). There were no statistically significant differences between the ZD 7288 group and the dexmedetomidine group, and the combination of the two together with ropivacaine did not enhance or attenuate the sensory effects of dexmedetomidine.

Anesthesiology 2011; 115:836–43 Brummett et al.
respectively). Pretreatment of forskolin with ropivacaine 0.35, 0.71, 0.89 for time points 120, 150, 180, 210 min, the 90-min time point (fig. 3). There were significant time (P < 0.0001), drug (P < 0.0001), and time-by-drug (P < 0.0001) interactions. Post hoc analyses demonstrated a significantly longer duration of analgesia in the dexmedetomidine plus ropivacaine group compared with the other three groups at time points 90–180 min (P < 0.0001 for each significant time point noted in fig. 3). Individual time point analyses from 90–210 min between the ropivacaine alone group and the group receiving forskolin pretreatment followed by dexmedetomidine plus ropivacaine showed differences only at the 90-min time point (P = 0.0002), but there were otherwise no significant differences between the groups (P = 0.05, 0.35, 0.71, 0.89 for time points 120, 150, 180, 210 min, respectively). Pretreatment of forskolin with ropivacaine alone decreased the duration of analgesia compared with ropivacaine alone with a saline (placebo) pretreatment. Significant differences were detected at time points 60 (P = 0.0001) and 90 (P < 0.0001). There was not a significant time-by-drug interaction found in the control (unblocked) paw between groups (P = 0.068, control paw data not shown).

Iₙ Current Agonist (Forskolin)

Pretreatment with the highest dose of forskolin (768 μM) attenuated the analgesic effects of dexmedetomidine added to ropivacaine (fig. 3). There were significant time (P < 0.0001), drug (P < 0.0001), and time-by-drug (P < 0.0001) interactions. Post hoc analyses demonstrated a significantly longer duration of analgesia in the dexmedetomidine plus ropivacaine group compared with the other three groups at time points 90–180 min (P < 0.0001 for each significant time point noted in fig. 3). Individual time point analyses from 90–210 min between the ropivacaine alone group and the group receiving forskolin pretreatment followed by dexmedetomidine plus ropivacaine showed differences only at the 90-min time point (P = 0.0002), but there were otherwise no significant differences between the groups (P = 0.05, 0.35, 0.71, 0.89 for time points 120, 150, 180, 210 min, respectively). Pretreatment of forskolin with ropivacaine alone decreased the duration of analgesia compared with ropivacaine alone with a saline (placebo) pretreatment. Significant differences were detected at time points 60 (P = 0.0001) and 90 (P < 0.0001). There was not a significant time-by-drug interaction found in the control (unblocked) paw between groups (P = 0.068, control paw data not shown).

Three doses of forskolin (384, 576, and 768 μM) doses followed by ropivacaine plus dexmedetomidine were studied. The highest dose of forskolin (768 μM) significantly attenuated the dexmedetomidine-induced duration of sensory blockade compared with the ropivacaine plus dexmedetomidine group (median 180 min [25th, 75th interquartile range 180, 210] vs. 150 [127.5, 150]). Although the study was not powered to detect a difference between the forskolin doses, there was a downward, but not statistically significant, trend in the duration of analgesia with each increasing dose of forskolin pretreatment (384, 576, and 768 μM forskolin; 180,[150,180] 150 [127.5, 172.5], 150 [127.5, 150] min, respectively).

Neurobehavioral Assessments 24 h after Nerve Block

There were no differences between any of the groups for surgically treated or control paw withdrawal latency when
In a recent study, we demonstrated that the analgesic effects of peripheral perineural dexmedetomidine were not reversed by either α_2- or α_2-adrenoceptor antagonists (prazosin and idazoxan, respectively; fig. 1). Dexmedetomidine is approved for intravenous administration for sedation and analgesia in intubated and mechanically ventilated patients in the intensive care unit and for nonintubated patients for surgical and other procedures.\(^\text{18}\) The described mechanism of action for intravenous dexmedetomidine is α_2-mediated. The antinociceptive properties of neuraxial dexmedetomidine were previously demonstrated to be α_2-mediated and were reversed by a proportionally much lower dose of idazoxan than that which was used in the current study.\(^\text{16,19,20}\) Consistent with our findings, an *in vitro* study of frog sciatic nerves demonstrated a dose-dependent decrease of compound action potentials with dexmedetomidine, which was not reversed by α_2-adrenoceptor antagonists.\(^\text{10}\) When compared using the same compound action potential model, the effects of clonidine were only 20% of that which was seen with dexmedetomidine.

Mechanism of Action for Peripheral Perineural Dexmedetomidine Similar to Clonidine

The current study indicates that the mechanism of action for peripheral perineural dexmedetomidine is similar to clonidine.\(^\text{12-14,21,22}\) Clonidine has been used as an additive to local anesthetics for peripheral nerve blocks for many years, dating back to the first human descriptions in the early 1990s.\(^\text{23-25}\) Despite demonstrating clear efficacy with short- and intermediate-acting local anesthetics, the effects of clonidine added to long-acting local anesthetics for peripheral nerve blocks has been questioned by some experts and the data are conflicting.\(^\text{26,27}\) Based on the available data, it was concluded in a meta-analysis that clonidine increases the duration of long-acting local anesthetics by approximately 2 h.\(^\text{27}\) The limited analgesic benefit, potential side effects (hypotension, bradycardia, and sedation), and current cost ($46.93 for a 1,000-$g$ vial at the University of Michigan) have tempered the widespread use of clonidine in clinical practice. Some institutions, such as ours, have elected to have pharmacists prepare 10 sterile 100-g clonidine syringes from a 1,000-g vial to control cost; however, this situation again presents issues related to labor costs and resources.

Perineural Dexmedetomidine Not Reversed by α_1- or α_2-Adrenoceptor Antagonists

The peripheral analgesic effects of dexmedetomidine were not reversed by either α_1- or α_2-adrenoceptor antagonists (prazosin and idazoxan, respectively; fig. 1). Dexmedetomidine is approved for intravenous administration for sedation and analgesia in intubated and mechanically ventilated patients in the intensive care unit and for nonintubated patients for surgical and other procedures.\(^\text{18}\) The described mechanism of action for intravenous dexmedetomidine is α_2-mediated. The antinociceptive properties of neuraxial dexmedetomidine were previously demonstrated to be α_2-mediated and were reversed by a proportionally much lower dose of idazoxan than that which was used in the current study.\(^\text{16,19,20}\) Consistent with our findings, an *in vitro* study of frog sciatic nerves demonstrated a dose-dependent decrease of compound action potentials with dexmedetomidine, which was not reversed by α_2-adrenoceptor antagonists.\(^\text{10}\) When compared using the same compound action potential model, the effects of clonidine were only 20% of that which was seen with dexmedetomidine.
Dexmedetomidine is currently more expensive than clonidine ($68.86 for a 200-μg vial at the University of Michigan); therefore, efficacy greater than clonidine should be established to justify the additional cost.

Laboratory studies conducted on perineural dexmedetomidine have shown impressive efficacy when combined with long-acting local anesthetics (bupivacaine and ropivacaine), whereas the preclinical clonidine data have been confined to combinations with short-acting local anesthetics (lidocaine). There are limited human data to date using dexmedetomidine in peripheral nerve blocks, but both studies have clearly demonstrated efficacy when added to long-acting local anesthetics. In a randomized, double-blind, controlled trial, Obayah et al. found a statistically significant increase in the time to first analgesic request from the addition of 1 μg/kg dexmedetomidine added to bupivacaine versus bupivacaine alone in greater palatine nerve blocks for cleft palate repair in children (mean 22 h [range 20.6–23.7] vs. 14.2 h [13–15], respectively). There were no noted differences in sedation, heart rate, or blood pressure between the groups. More recently, in a randomized, double-blind, control trial, Esmaoglu et al. studied 150 μg dexmedetomidine added to levobupivacaine compared with levobupivacaine alone for axillary brachial plexus blocks. The investigators used a nerve stimulation technique for the axillary block and large volumes (40 ml). Dexmedetomidine prolonged the duration of analgesia and motor blockade while also decreasing the time to onset of sensory and motor blockade. Systolic blood pressures and heart rate were lower in the dexmedetomidine group for the first 2 h; however, there were no adverse events. Although the dexmedetomidine group was clearly superior to the control group, the analgesic effects may have been undervalued in this study by the use of high volumes (lower concentration of dexmedetomidine) and failure to use ultrasound. Advances in ultrasound technology allows for placement of the injectate closer to the peripheral nerve, thereby concentrating the drug(s) at the site of action and decreasing the required volume. The side effects of dexmedetomidine clinically are likely to be dependent on the total dose and systemic absorption rate, rather than concentration, whereas the analgesic effects appear to be concentration-dependent.

Dexmedetomidine is not approved for neuraxial or perineural administration. To our knowledge, there have been eight human studies on the subject to date, including two peripheral perineural, one intrathecal, and five epidural studies. All of the studies have demonstrated efficacy. Side effects have been noted, but the data are not consistent. Some of the studies have noted dexmedetomidine-associated decreases in heart rate and blood pressure and increased sedation. The other four studies found no differences in side effects associated with dexmedetomidine. The sedation associated with intravenous dexmedetomidine has been termed “cooperative sedation,” which may mean that any sedation from perineural administration may be beneficial, especially compared with the type of sedation associated with benzodiazepines and opioids.

Limitations

The analgesic effects of dexmedetomidine were attenuated by pretreatment with forskolin; however, forskolin has many effects in addition to blockade of the Ih current and other membrane transport and channel proteins. Forskolin stimulates adenyl cyclase and thereby increases intracellular cyclic adenosine monophosphate. Forskolin can inhibit platelet aggregation and mast cell degranulation and it can increase cardiac contractility, insulin secretion, thyroid function, and lypolysis. In addition, forskolin can cause vasodilation, which could affect the duration of the nerve block independent of its effects on the Ih current. As with clonidine, pretreatment with a known blocker of the Ih current (ZD 7288) provided a comparable duration of analgesia to dexmedetomidine without additive or synergistic effects when combined (fig. 2). Whereas there are multiple in vivo and in vitro studies demonstrating Ih current blocking effects of clonidine and dexmedetomidine, it is possible that other actions of forskolin reversed the analgesic effects of dexmedetomidine.

The primary outcome measure of the study was the duration of sensory blockade as measured by the time to paw withdrawal to a thermal stimulus every 30 min after a sciatic nerve block. The duration of motor blockade was not assessed, as it would have required handling of the rats and handling would have confounded the sensory testing. The duration of motor blockade in regional anesthesia is important and should be included in clinical trials, as a selective sensory block without motor blockade offers clear advantages in facilitating comfortable postoperative rehabilitation. There are preclinical data to support that clonidine more selectively blocks C fibers (pain fibers) than Aα fibers (motor neurons). Whether this is also true for dexmedetomidine is unknown, and is open to future investigation.

The authors thank Kevin K. Tremper, M.D., Ph.D. (Professor, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan), for support and guidance. For statistical support, the authors thank Kathleen B. Welch, M.A., M.P.H. (Senior Statistician, Center for Statistical Consultation and Research, University of Michigan). For technical support, the authors thank members of the research laboratory at the University of Michigan, Department of Anesthesiology: Mary Norat, B.S. (Laboratory Manager), Christopher Watson, Ph.D. (Research Investigator), and Sarah L. Watson, B.S. (Research Associate).

References

1. Casati A, Fanelli G, Albertini A, Deni F, Anelati D, Antonino FA, Beccaria P: Interscalene brachial plexus anesthesia with either 0.5% ropivacaine or 0.5% bupivacaine. Minerva Anestesiologica 2000; 66:39–44
2. Casati A, Fanelli G, Aldegheri G, Berti M, Colnaghi E, Cedrati V, Torri G: Interscalene brachial plexus anesthesia with 0.5%, 0.75%, or 1% ropivacaine: A double-blind comparison with 2% mepivacaine. Br J Anaesth 1999; 83:872–5
17. Dirig DM, Salani A, Rathbun ML, Ozaki GT, Yaksh TL: Char-
15. Shirasaka T, Kannan H, Takasaki M: Activation of a G protein-
14. Erne-Brand F, Jirounek P, Drewe J, Hampl K, Schneider MC:
12. Gaumann DM, Brunet PC, Jirounek P: Hyperpolarizing after-
11. Dalle C, Schneider M, Clergue F, Bretton C, Jirounek P:
10. Kosugi T, Mizuta K, Fujita T, Nakashima M, Kumamoto E:
8. Esmaoglu A, Yegenoglu F, Akin A, Turk CY: Dexmedeto-
7. Brummett CM, Padda AK, Amodeo FS, Welch KB, Lydic R:
5. Brummett CM, Amodeo FS, Janda AM, Padda AK, Lydic R:
4. Tuman KJ: Clonidine prolongation of lidocaine analgesia
36. Laurenza A, Sutkowski EM, Seamon KB: Forskolin: A specific
35. Bekker A, Sturaitis MK: Dexmedetomidine for neurological
34. Schnaider TB, Vieira AM, Branda˜o AC, Lobo MV: [Intraoper-
33. El-Hennawy AM, Abd-Elwahab AM, Abd-Elmaksoud AM, El-
32. Vieira AM, Schnaider TB, Branda˜o AC, Pereira FA, Costa ED,
30. El-Hennawy AM, Abd-Elwahab AM, Abd-Elmaksoud AM, El-
29. Kanazi GE, Aouad MT, Jabbour-Khoury SI, Al Jazzar MD,
28. Vieira AM, Schanda TB, Brandão AC, Pereira FA, Costa ED,
27. Po¨o¨pping DM, Elia N, Marret E, Wenk M, Tramer MR: Cloni-
26. McCartney CJ, Duggan E, Apatu E: Should we add clonidine
25. Singelyn FJ, Dangoisse M, Bartholomée S, Gouverneur JM:
24. Gaumann D, Forster A, Giessen M, Habre W, Poinso t O,
23. Elekdjam JJ, Deschodt J, Viel EJ, Lubrano JF, Charavel P,
d’Athis F, du Callar J: Brachial plexus block with bupiva-
caine: Effects of added alpha-adrenergic agonists: Compari-
sion between clonidine and epidphrine. Can J Anaesth 1991;
38:870–5
22. Butterworth JF 5th, Strichartz GR: The alpha 2-adrenergic
agonists clonidine and guanfacine produce tonic and phasic
block of conduction in rat sciatic nerve fibers. Anesth Analg
1993; 76:295–301
21. Gaumann DM, Brunet PC, Jirounek P: Clonidine enhances
the effects of lidocaine on C-fiber action potential. Anesth
20. Nazarian A, Christianson CA, Hua XY, Yaksh TL: Dextemeto-
mide and ST-91 analgesia in the formalin model is mediated
by alpha2A-adrenoceptors: A mechanism of action distinct
19. Sabbe MB, Penning JP, Ozaki GT, Yaksh TL: Spinal and
systemic action of the α 2 receptor agonist dextemetomi-
dine in dogs: Antinociception and carbon dioxide response.
Anesthesiology 1994; 80:1057–72
18. Gerlach AT, Murphy CV, Dasta JF: An updated focused re-
view of dextemetomidine in adults. Ann Pharmacother
2009; 43:2064–74
17. Dirig DM, Salami A, Rathbun ML, Ozaki GT, Yaksh TL: Char-
acterization of variables defining hindpaw withdrawal la-
tency evoked by radiant thermal stimuli. J Neurosci Methods
1997; 76:185–91
16. Fisher B, Zornow MH, Yaksh TL, Peterson BM: Antinocice-
ptive properties of intrathecal dextemetomidine in rats. Eur
J Pharmacol 1991; 192:221–5
15. Shirasaka T, Kannan H, Takasaki M: Activation of a G protein-
linked inwardly rectifying K+ current and suppression of
inhomogeneous paraventricular nucleus neurons. Anesthesiol-
yology 2007; 107:605–15
14. Erne-Brand F, Jirounek P, Drewre J, Hampl K, Schneider MC:
Mechanism of antinociceptive action of clonidine in nonfib-
13. Krosin JS, Buvanendran A, Beck DR, Topic JE, Watts DE,
Tuman KJ: Clonidine prolongation of lidocaine analgesia
after sciatic nerve block in rats is mediated via the hyperpo-
larization-activated cation current, not by α-adrenoceptors.
Anesthesiology 2004; 101:488–94
12. Gaumann DM, Brunet PC, Jirounek P: Hyperpolarizing after-
potentials in C fibers and local anesthetic effects of clonidine
and lidocaine. Pharmacology 1994; 48:21–9
11. Dalle C, Schneider M, Clergue F, Breton C, Jirounek P: Inhibi-
tion of the h(1) h current in isolated peripheral nerve: A
novel mode of peripheral antinociception? Muscle Nerve
2001; 24:254–61
10. Kosugi T, Mizuta K, Fujita T, Nakashima M, Kumamoto E:
High concentrations of dextemetomidine inhibit compound
action potentials in frog sciatic nerves without alpha(2)
adrenoceptor activation. Br J Pharmacol 2010; 160:1662–76
Addition of dextemetomidine to bupivacaine for greater palatine
nerve block prolongs postoperative analgesia after cleft palate
8. Esmaoglu A, Yegenoglu F, Akın A, Turk CY: Dextemetomi-
dine added to levobupivacaine prolongs auxillary brachial
plexus block. Anesth Analg 2010; 111:1548–51
7. Brummett CM, Padda AK, Amodeo FS, Welch KB, Lydic R:
Peripheral nerve dextemetomidine added to ropivacaine causes
a dose-dependent increase in the duration of thermal antino-
ception in sciatic nerve block in rat. Anesthesiology 2009;
111:1111–9
6. Brummett CM, Norat MA, Palmisano JM, Lydic R: Peripheral
administration of dextemetomidine in combination with bu-
pivacaine enhances sensory and motor blockade in sciatic
nerve block without inducing neurotoxicity in rat. Anesthesio-
yology 2008; 109:502–11
5. Brummett CM, Amodeo FS, Janda AM, Padda AK, Lydic R:
4. Tuman KJ: Clonidine prolongation of lidocaine analgesia
3. Elhakim M, Abdelhamid D, Abdelfattach H, Magdy H, Elsayed
2. Vieira AM, Schnaider TB, Brandão AC, Pereira FA, Costa ED,
1. Dalle C, Schneider M, Clergue F, Breton C, Jirounek P: Inhibi-
tion of the h(1) h current in isolated peripheral nerve: A
novel mode of peripheral antinociception? Muscle Nerve
2001; 24:254–61
Anesthesiology 2011; 115:836–43
843
Brummet et al.