Screening for Hepatitis C Virus Infection in Adults: A Systematic Review for the U.S. Preventive Services Task Force

Roger Chou, MD; Erika Barth Cottrell, PhD, MPP; Ngoc Wasson, MPH; Basmah Rahman, MPH; and Jeanne-Marie Guise, MD, MPH

Background: Identification of hepatitis C virus (HCV)-infected persons through screening could lead to interventions that improve clinical outcomes.

Purpose: To review evidence about potential benefits and harms of HCV screening in asymptomatic adults without known liver enzyme abnormalities.

Data Sources: English-language publications identified from MEDLINE (1947 to May 2012), the Cochrane Library Database, clinical trial registries, and reference lists.

Study Selection: Randomized trials and cohort, case–control, and cross-sectional studies that assessed yield or clinical outcomes of screening; studies reporting harms from HCV screening; and large series reporting harms of diagnostic liver biopsies.

Data Extraction: Multiple investigators abstracted and checked study details and quality by using predefined criteria.

Data Synthesis: No study evaluated clinical outcomes associated with screening compared with no screening or of different risk- or prevalence-based strategies. Three cross-sectional studies in higher prevalence populations found that screening strategies that targeted multiple risk factors were associated with sensitivities greater than 90% and numbers needed to screen to identify 1 case of HCV infection of less than 20. Data on direct harms of screening were sparse. A large study of percutaneous liver biopsies (n = 2740) in HCV-infected patients with compensated cirrhosis reported no deaths and a 1.1% rate of serious adverse events (primarily bleeding and severe pain).

Limitations: Modeling studies were not examined. High or unreported proportions of potentially eligible patients in the observational studies were not included in calculations of screening yield because of unknown HCV status.

Conclusion: Although screening tests can accurately identify adults with chronic HCV infection, targeted screening strategies based on the presence of risk factors misses some patients with HCV infection. Well-designed prospective studies are needed to better understand the effects of different HCV screening strategies on diagnostic yield and clinical outcomes.

Primary Funding Source: Agency for Healthcare Research and Quality.

For author affiliations, see end of text.

This article was published at www.annals.org on 27 November 2012.

The prevalence of anti–hepatitis C virus (HCV) antibody in the United States is about 1.6% (1). Approximately 78% of affected patients have viremia, indicating chronic infection. About two thirds of patients with HCV infection were born between 1945 and 1964, with the highest prevalence (4.3%) in people 40 to 49 years of age in 1999–2002 (1). There were 16,000 new cases of HCV infection in 2009 (2).

In 2007, HCV infection was associated with an estimated 15,000 deaths in the United States (3). Liver disease related to HCV is the most common indication for liver transplantation among U.S. adults (4, 5) and is a leading cause of hepatocellular carcinoma (6).

The virus is primarily acquired via percutaneous exposures to infected blood, such as injection drug use (7–13). Transusions before 1992 and high-risk sexual behaviors are also associated with increased risk, although the efficiency of sexual transmission seems to be relatively low (7, 8, 14, 15).

The natural course of HCV infection varies. Studies of community cohorts estimate cirrhosis in 7% of people after 20 years of infection, with rates about twice as high in clinical and referral cohorts (16, 17). Studies with longer follow-up suggest that disease progression accelerates after 20 years (18).

Screening for HCV infection could identify persons at earlier stages of disease, before they develop serious or irreversible liver damage, and lead to treatments to improve clinical outcomes or reduce transmission risk. Up to three quarters of HCV-infected persons are unaware of their status (19).

In 2004, the U.S. Preventive Services Task Force (USPSTF) recommended against HCV screening in adults not at increased risk (D recommendation) and found insufficient evidence to recommend for or against screening in high-risk adults (I recommendation) (20). Although the USPSTF found that screening tests are accurate and that antiviral treatments improve viremia (21), the recommendations were based on the lower prevalence of HCV infection in persons without risk factors; the relatively low rate of long-term progression, potentially resulting in overtreatment; and lack of evidence that screening improves important health outcomes or reduces transmission risk. Other groups recommend screening in higher-risk patients (22–24). The Centers for Disease Control and Prevention...
(CDC) also recently recommended screening all persons born between 1945 and 1965 (25).

The purpose of this report is to review the evidence on HCV screening in asymptomatic adults without known liver enzyme abnormalities (26). This review focuses on research gaps identified in the 2004 USPSTF review (21) and will be used together with a separate review on antiviral treatments (27) by the USPSTF to update its HCV screening recommendations.

METHODS

Scope

We developed a review protocol and analytic framework that included the following key questions:

1. Does screening for HCV infection in nonpregnant adults without known abnormal liver enzyme reduce mortality and morbidity due to HCV infection, affect quality of life, or reduce incidence of HCV infection?

2. What is the effectiveness of different risk- or prevalence-based methods for screening for HCV infection on clinical outcomes?

3. What is the sensitivity and number needed to screen to identify 1 case of HCV infection of different risk- or prevalence-based methods for screening for HCV infection?

4. What are the harms associated with screening for HCV infection, including diagnostic liver biopsies?

Data Sources and Searches

A research librarian searched Ovid MEDLINE (1947 to May 2012), Embase, the Cochrane Library Database, Scopus, and PsycINFO; clinical trial registries (including ClinicalTrials.gov); and grants databases. We supplemented electronic searches by reviewing reference lists of retrieved articles.

Study Selection

At least 2 reviewers independently evaluated each study to determine inclusion eligibility. Papers were selected for full review if they were relevant to a key question and met the predefined inclusion criteria. For screening, we included randomized trials, cohort studies, case–control studies, and cross-sectional studies that compared different screening strategies in asymptomatic adults without known liver enzyme abnormalities and reported clinical outcomes or sufficient information to compute the sensitivity and number needed to screen to identify 1 HCV-infected person. We also included large studies (sample size >1000 participants) reporting harms associated with diagnostic liver biopsy published since 2004 and uncontrolled or controlled studies reporting direct harms associated with screening.

Clinical outcomes were mortality, end-stage liver disease, cirrhosis, hepatocellular carcinoma, need for transplantation, quality of life, HCV transmission, harms associated with screening (such as anxiety, labeling, and effects on quality of life), and harms associated with liver biopsy (including death, bleeding, and severe pain).

We restricted inclusion to English-language articles and excluded studies published only as abstracts. We excluded studies of posttransplant patients, HIV-infected patients, patients undergoing hemodialysis, and persons with occupational exposures, in whom screening and treatment considerations may differ from those in the general population (29–33).

Data Abstraction and Quality Rating

One investigator abstracted details about the study design, patient population, setting, interventions, analysis, follow-up, and results. A second investigator reviewed data for accuracy. Two investigators independently applied predefined criteria (34–36) to assess the quality of each study as good, fair, or poor. Discrepancies were resolved through a consensus process.

Data Synthesis

For studies reporting the diagnostic yield of different screening strategies, we computed the number needed to screen to identify 1 case of HCV infection by dividing the number of screening tests performed by the number of HCV cases identified. The proportion screened was the number of patients screened upon application of a particular screening strategy, divided by the total number of patients assessed.

We assessed the overall strength of each body of evidence as “high,” “moderate,” “low,” or “insufficient” in accordance with the AHRQ “Methods Guide for Effectiveness and Comparative Effectiveness Reviews” (37), based on the quality of studies, consistency between studies, precision of estimates, and directness of evidence.

Role of the Funding Source

This research was funded by AHRQ’s Effective Health Care Program. Investigators worked with AHRQ staff to develop and refine the scope, analytic framework, and key
No study compared clinical outcomes between individuals screened and not screened for HCV infection or between individuals screened by using different risk- or prevalence-based strategies.

Yield of Risk-Based Screening Methods

Four cross-sectional studies (samples sizes ranging from 985 to 3367) provided data to calculate the diagnostic accuracy and yield of alternative HCV screening criteria (Table 1) (38–41). Two studies evaluated patients attending sexually transmitted disease clinics (38, 41) and 2 evaluated patients attending urban primary care clinics (39, 40). Three studies evaluated higher-prevalence populations (HCV prevalence, 4.6% to 8.3%) (38–40) and 1 a lower-prevalence population (HCV prevalence, 0.5%) (39).

Table 1. Studies of Alternative Screening Strategies

<table>
<thead>
<tr>
<th>Study, Year; Country (Reference)</th>
<th>Study Design</th>
<th>Sample Size, n</th>
<th>Setting Population Characteristics</th>
<th>HCV Screening Strategies</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gunn et al, 2003; United States (38)</td>
<td>Cross-sectional</td>
<td>3367</td>
<td>STD clinic Age ≥30 y: 4.6% Female: Not reported Self-reported injection drug use: 5.7%</td>
<td>A: Screen all B: Ever injected drugs (self-report) C: Ever injected drugs or blood transfusions before 1992 (self-report) D: Same as C, or sex partner used injection drugs (self-report) E: Same as D (self-report or identified by clinic staff) F: Same as E, plus bacterial STD in last 5 y G: Same as F, plus age ≥30 y</td>
<td>Fair</td>
</tr>
<tr>
<td>McGinn et al, 2008; United States (39)</td>
<td>Cross-sectional</td>
<td>1000</td>
<td>Urban primary care clinic Age: Mean, 50 y Female: 73% Nonwhite: 90%</td>
<td>A: Screen all B: Positive findings in ≥1 of 3 domains C: Positive findings in ≥2 domains D: Positive findings in 3 domains</td>
<td>Fair</td>
</tr>
<tr>
<td>Zuniga et al, 2006; United States (40)</td>
<td>Cross-sectional</td>
<td>2263</td>
<td>Urban primary care clinics Age 40–54 y: 31% White: 78% Female: 3.9% Vietnam-era veteran: 50% Blood transfusion before 1992: 17% Any injection drug use: 4.5% Abnormal liver function test results: 9.1%</td>
<td>A: Any of 11 risk factors (Vietnam-era veteran, multiple sexual contacts, tattoo or body piercing, intermarry alcohol use, blood transfusion before 1992, intranasal cocaine use, blood exposure [mucous membranes], abnormal liver enzyme levels, injection drug use [past or present], unexplained liver disease, hemodialysis) B: Any of 5 risk factors (Vietnam-era veteran, tattoo or body piercing, blood transfusion before 1992, abnormal liver enzyme levels, injection drug use) C: Self-reported injection drug use (past or present)</td>
<td>Fair</td>
</tr>
<tr>
<td>Zuure et al, 2010; the Netherlands (41)</td>
<td>Cross-sectional</td>
<td>985</td>
<td>STD clinics Population characteristics not reported</td>
<td>A: Screen all B: ≥1 risk factor, based on 20-item questionnaire*</td>
<td>Fair</td>
</tr>
</tbody>
</table>

HBV = hepatitis B virus; HCV = hepatitis C virus; STD = sexually transmitted disease.

* Injection drug use, born in HCV-endemic country, blood transfusion before 1992, HCV-infected mother, mother is/was injection drug user, living with HCV-infected individual, living with injection drug user, needle exposure to high-risk person, needle exposure in HCV-endemic country, patient with hemophilia, hemodialysis patient, organ recipient, received blood products in medium- or high-risk country, exposure of health care workers to blood or tissue in medium- or high-risk country, surgical or dental procedure in medium- or high-risk country, ritual intervention (circumcision, scarification) in medium- or high-risk country, tattoo in medium- or high-risk country, body piercing in medium- or high-risk country, HIV-positive status, noninjection drug use ≥3 times/wk for ≥3 mo.

questions. AHRQ staff had no role in study selection, quality assessment, synthesis, or development of conclusions. AHRQ staff provided project oversight, distributed the draft report for peer review, and reviewed the draft report and manuscript. The investigators are solely responsible for the content of the manuscript and the decision to submit for publication.

RESULTS

The Appendix Figure (available at www.annals.org) shows the results of the search and study selection process. No study compared clinical outcomes between individuals screened and not screened for HCV infection or between individuals screened by using different risk- or prevalence-based strategies.
Table 2. Screening Strategies: Effects of Applying Alternative Screening Criteria on Proportion Screened, Sensitivity, Specificity, and Number Needed to Screen to Identify 1 Case of HCV Infection

<table>
<thead>
<tr>
<th>Study, Year; Country (Reference)</th>
<th>HCV Prevalence, % (n/N)</th>
<th>Screening Strategy</th>
<th>Proportion Screened, % (n/N)</th>
<th>Sensitivity, % (n/N)</th>
<th>Specificity, % (n/N)</th>
<th>Number Needed to Screen to Identify 1 Case of HCV Infection, n (n/N)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gunn et al, 2003; United States (38)</td>
<td>4.9 (165/3367)</td>
<td>A: Screen all, B: Injection drug use, C: Injection drug use or blood transusions, D: Injection drug use, blood transfusions, or sex partner was an injection drug user, E: Same as D (self-report or identified by clinic staff), F: Same as E, plus bacterial sexually transmitted disease in last 5 y, G: Same as F, plus age ≥30 y</td>
<td>A: 100 (3356/3356); B: 5.8 (193/3356); C: 7.5 (253/3356); D: 10 (347/3356); E: 12 (413/3356); F: 34 (1145/3356); G: 63 (2127/3356)</td>
<td>A: 100 (165/165); B: 60 (99/165); C: 64 (105/165); D: 67 (110/165); E: 70 (116/165); F: 81 (134/165); G: 97 (160/165)</td>
<td>A: 0 (0/3191); B: 97 (3097/3191); C: 95 (3043/3191); D: 93 (2994/3191); E: 91 (2894/3191); F: 68 (2180/3191); G: 38 (1224/3191)</td>
<td>A: 20 (3356/165); B: 1.9 (193/99); C: 2.4 (253/105); D: 3.2 (347/110); E: 3.6 (413/116); F: 8.5 (1145/134); G: 13 (2127/160)</td>
</tr>
<tr>
<td>McGinn, 2008; United States (39)</td>
<td>8.3 (83/1000)</td>
<td>A: Screen all, B: Positive findings in ≥1 of 3 domains, C: Positive findings in ≥2 domains, D: Positive findings in ≥3 domains</td>
<td>A: 100 (1000/1000); B: 71 (709/1000); C: 23 (228/1000); D: 5.6 (56/1000)</td>
<td>A: 100 (83/83); B: 92 (76/83); C: 65 (54/83); D: 34 (28/83)</td>
<td>A: 0 (0/917); B: 31 (284/917); C: 81 (743/917); D: 97 (889/917)</td>
<td>A: 12 (1000/83); B: 9.3 (709/76); C: 4.2 (228/54); D: 2.0 (56/28)</td>
</tr>
<tr>
<td>Nguyen et al, 2005; United States (42)</td>
<td>Case-control design: 225 HCV-positive, 204 HCV-negative</td>
<td>A: Screen all, B: ≥1 risk factor, based on 7-item instrument, C: ≥2 risk factors, D: ≥3 risk factors, E: ≥4 risk factors</td>
<td>A: 100 (429/429); B: 78 (335/429); C: 48 (207/429); D: 28 (118/429); E: 13 (56/429)</td>
<td>A: 100 (225/225); B: 94 (212/225); C: 79 (178/225); D: 51 (115/225); E: 24 (55/225)</td>
<td>A: 0 (0/204); B: 35 (81/204); C: 86 (175/204); D: 99 (201/204); E: 100 (203/204)</td>
<td>Not applicable (case-control design)</td>
</tr>
<tr>
<td>Zuniga et al, 2006; United States (40)</td>
<td>4.6 (103/2263)</td>
<td>A: Any of 11 risk factors, B: Any of 5 risk factors, C: Self-reported injection drug use (past or present)</td>
<td>A: 100 (2263/2263); B: 78 (1776/2263); C: 3.0 (68/2263)*</td>
<td>A: 100 (103/103); B: 97 (100/103); C: 41 (42/103)</td>
<td>A: 0 (0/2160); B: 22 (484/2160); C: 99 (2134/2160)</td>
<td>A: 22 (2263/103); B: 18 (1776/100); C: 1.6 (68/42)</td>
</tr>
<tr>
<td>Zuure et al, 2010; the Netherlands (41)</td>
<td>1.0 (98/985)</td>
<td>A: Screen all, B: ≥1 risk factor, based on 20-item questionnaire</td>
<td>A: 100 (985/985); B: 21 (207/985)</td>
<td>A: 100 (98/98); B: 90 (88/98)</td>
<td>A: 0 (0/887); B: 87 (768/887)</td>
<td>A: 10 (985/98); B: 2.4 (207/88)</td>
</tr>
</tbody>
</table>

HCV = hepatitis C virus; STD = sexually transmitted disease.

* Number of screening tests performed/number of HCV cases identified.

prevalence population (HCV prevalence, 1.0%) (41). One study of patients in primary care and gastroenterology clinics (n = 429) also evaluated alternative screening criteria but used a case–control design (42). All of the studies applied and evaluated alternative screening criteria retrospectively. Other limitations of the studies were that high proportions of potentially eligible patients were not included in analyses because of unknown HCV status or that the study did not report the proportion with unknown HCV status. Although the studies used different criteria for targeted screening, several factors (a personal history of injection drug use, sexual intercourse with an injection drug user, and pre-1992 blood transfusions) were consistently used across studies to identify higher-risk individuals.

One cross-sectional study of a lower-prevalence population in a Dutch sexually transmitted disease clinic (n = 985; HCV seroprevalence, 1%) found that screening based on presence of 1 or more positive items on a 20-item questionnaire was associated with a sensitivity of 90% for identifying persons with HCV infection and a number needed to screen to identify 1 case of HCV infection of 2.4 (Table 2) (41).

Three cross-sectional studies in higher-prevalence populations found that screening strategies targeting multiple risk factors were associated with sensitivities of more than 90% and numbers needed to screen of 9.3 to 18 (Table 2) (38–40). One cross-sectional study in a sexually transmitted disease clinic (n = 3367; HCV seroprevalence, 4.9%) found that screening patients with 1 of 5 risk factors (injection drug user, sex partners of injection drug user, received a pre-1992 blood transfusion, bacterial sexually transmitted disease in last 5 years, or age ≥30 years) would
have resulted in testing 63% of clinic attendees, with a sensitivity of 97% for identifying HCV infection and a number needed to screen of 13 (38). One study of patients in an inner-city primary care clinic (n = 1000; HCV seroprevalence, 8.3%) found that screening patients with positive findings in at least 1 of 3 domains (medical history, exposure history, or social history) would have resulted in screening 71% of the population, with a sensitivity of 92% and a number needed to screen of 9.3 (39). A study of U.S. veterans (n = 2263; HCV seroprevalence, 4.6%) found that screening patients according to presence of 1 or more of 5 risk factors (Vietnam-era veteran, tattoo/body piercing, blood transfusion before 1992, abnormal liver enzyme levels, past or present injection drug use) would have resulted in screening 78% of the population compared with screening based on the presence of these or 6 additional risk factors (multiple sexual contacts, intemperate alcohol use, intranasal cocaine use, blood exposure [mucous membranes], unexplained liver disease, hemodialysis), with a sensitivity of 97% and number needed to screen of 18 (40).

More narrowly targeted screening strategies evaluated in these studies were associated with specificities of more than 95% and numbers needed to screen of less than 2, but missed up to two thirds of infected patients (38–40). Two studies found screening only injection drug users would have resulted in testing of 3.0% or 5.8% of the population, with specificities of 41% and 60%, and numbers needed to screen of 1.6 and 1.9, respectively (38, 40). One study found screening patients with positive findings in 3 domains (medical, exposure, or social history) would have resulted in testing of 5.6% of the population, with a sensitivity of 34% and number needed to screen of 2.0 (39).

A case–control study (222 cases) found screening based on presence of 4 or more of 7 risk factors (self-reported history of sex with a prostitute, history of exposure to potentially infected blood transfusion, rejections as a blood donor, refused life insurance, witnessed use of injecting drugs, sexual intercourse with an injection drug user, or self-reported hepatitis B virus infection) would have identified 24% of HCV-infected persons, with a specificity of nearly 100% (203 of 204) (42). Screening patients with 1 or more risk factors would have identified 94% of infected persons, with a specificity of 35%.

The 2004 USPSTF review (21) included a post hoc analysis of National Hepatitis Screening Survey data that found that screening using 1 of 3 risk factor models would have identified 53% to 69% of HCV-infected persons (43).

Potential Harms Associated With Screening

Three studies (n = 15 to 161) found diagnosis of HCV infection associated with some negative effects on psychological status, strain on spousal relationships, or binge drinking, but these studies had important shortcomings, including no control group of HCV-infected persons unaware of their status, reliance on retrospective recall, and poorly defined outcomes (44–46). A small, fair-quality cross-sectional study (n = 34) included in the 2004 USPSTF review found that HCV-infected intravenous drug users aware of their status reported worse quality of life than those who were unaware (47) of their status.

One study of percutaneous liver biopsies (n = 2740) in HCV-infected patients with compensated cirrhosis and at least moderate fibrosis reported a 1.1% rate of serious adverse events, most commonly bleeding or severe pain, with no deaths (48). Two other small studies (n = 126 and n = 166) included in the 2004 USPSTF review reported no episodes of bleeding, perforation, or death after percutaneous liver biopsy in HCV-infected persons (49, 50).

In patients undergoing liver biopsy for various indications, large series (n = 1398 to 61184) published since 2004 reported periprocedural mortality rates of 0% to 0.2% and major complications (primarily bleeding) in 0.3% to 1.0% (51–55), consistent with studies included in the 2004 USPSTF review (56–62).

Discussion

The evidence reviewed in this report is summarized in Table 3. As in the 2004 USPSTF review (21), we found no direct evidence on effects of HCV screening versus no screening on clinical outcomes, or on the comparison of clinical effects of alternative screening strategies. Retrospective studies found that screening strategies targeting multiple risk factors were associated with sensitivities exceeding 90% and numbers needed to screen to identify 1 case of HCV infection of less than 20 (38–41). More narrowly targeted alternative screening strategies (such as screening only persons with a history of injection drug use) were associated with numbers needed to screen of less than 2, but they missed up to two thirds of infected patients.

Although direct harms of screening seem minimal, such harms as labeling, anxiety, and stigmatization remain poorly studied and difficult to quantify (63–65). Harms of biopsy include a risk for death of less than 0.2% and serious complications (primarily bleeding and severe pain) in about 1% (48, 51–55). As detailed in our full report, noninvasive tests have fair to good accuracy for diagnosing fibrosis and good to excellent accuracy for diagnosing cirrhosis compared with liver biopsy (26). Although clinical practice has evolved toward less routine use of liver biopsy before antiviral therapy and the proportion of HCV-infected patients undergoing liver biopsy has decreased overall, no study reported the proportion of screening-detected patients who underwent biopsy. Thus, it is difficult to determine the magnitude of harms associated with liver biopsy subsequent to screening.

In the absence of direct evidence on clinical outcomes associated with screening, an indirect chain of evidence showing the availability of accurate diagnostic tests and effective treatments could link screening with improve-
Table 3. Summary of Evidence

<table>
<thead>
<tr>
<th>Strength of Evidence of Findings From 2012 AHRQ Report*</th>
<th>Studies Identified and Participants</th>
<th>Overall Quality</th>
<th>Consistency (High, Moderate, Low)</th>
<th>Directness (Direct or Indirect)</th>
<th>Precision (High, Moderate, Low)</th>
<th>Summary of Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does screening for HCV infection in nonpregnant adults without known abnormal liver enzymes reduce mortality and morbidity due to HCV, affect quality of life, or reduce transmission of HCV?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No evidence</td>
<td>No studies</td>
<td>No studies</td>
<td>No studies</td>
<td>No studies</td>
<td>No studies</td>
<td>No study compared clinical outcomes between individuals screened and not screened for HCV infection.</td>
</tr>
<tr>
<td>What is the effectiveness of different risk- or prevalence-based methods for screening for HCV infection on clinical outcomes?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No evidence</td>
<td>No studies</td>
<td>No studies</td>
<td>No studies</td>
<td>No studies</td>
<td>No studies</td>
<td>No study compared clinical outcomes associated with different risk- or prevalence-based strategies for targeted HCV screening.</td>
</tr>
<tr>
<td>What is the sensitivity and number needed to screen to identify 1 case of HCV infection of different risk- or prevalence-based methods for screening for HCV infection?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall strength of evidence: low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 studies (4 cross-sectional, 1 case-control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8044 participants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Five studies found screening strategies that targeted multiple risk factors were associated with sensitivities of >90% and numbers needed to screen to identify 1 case of HCV infection of <20. More narrowly targeted screening strategies were associated with numbers needed to screen of <2, but with the tradeoff of missing up to two thirds of infected patients.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What are the harms associated with screening for HCV infection, including diagnostic liver biopsies?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening: overall strength of evidence: low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening: 5 studies (1 cross-sectional, 3 intervention series, and 1 controlled trial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288 participants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening: poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening: unable to assess (assessed different outcomes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening: direct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening: low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening: Five studies of patients with diagnosis of HCV infection suggested potential negative psychological and social effects, but results are difficult to interpret because of small sample sizes and methodological shortcomings, including no unscreened comparison group. Liver biopsies: One study (n = 2740) of patients with chronic HCV infection and compensated cirrhosis reported serious adverse events in 1.1%, including 0.6% serious bleeding episodes and 0.3% severe pain, with no deaths. Five large (n = 1398–61 184) intervention series of percutaneous liver biopsy for a variety of conditions reported peri procedural mortality in <0.2% and serious complications in 0.3%–1.0%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver biopsies: overall strength of evidence: moderate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver biopsies: 6 studies (intervention series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88 587 participants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver biopsies: fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver biopsies: moderate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver biopsies: direct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver biopsies: moderate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHRQ = Agency for Healthcare Research and Quality; HCV = hepatitis C virus.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
* Additional questions are addressed in the full report (26). Questions related to prenatal screening are addressed in a separate article (28).
tion, in addition to persons with risk factors for HCV infection (25). The CDC based its recommendation on the prevalence of patients with HCV infection in this birth cohort (accounting for about three quarters of patients with HCV infection in the United States), the high proportion of patients with undiagnosed HCV infection, projected disease burden after several decades of infection, and estimated benefits from antiviral treatments. Although cost-effectiveness analyses suggest that the birth cohort screening approach is highly cost-effective, no clinical data are yet available (13). The CDC’s birth cohort approach was not evaluated in the studies included in our review on the yield of alternative screening strategies. Clinical studies that prospectively evaluate the accuracy, yield, and outcomes of alternative HCV screening strategies, including the birth cohort approach, are needed.

From Oregon Health & Science University, Portland, Oregon.

Disclaimer: The findings and conclusions in this document are those of the authors, who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

Acknowledgment: The authors thank Robin Paynter, MLS; Rose Campbell, MLS; Christina Bougatsos, MPH; Ian Blazina, MPH; Tracy Dana, MLS; Jessica Griffin, MS; AHRQ Task Order Officer Christine Chang, MD, MPH; and USPSTF Medical Officer Iris Mabry-Hernandez, MD, MPH.

Grant Support: By AHRQ (contract 290-2007-10057-I, task order 8), Rockville, Maryland.

Potential Conflicts of Interest: Dr. Chou: Grant (money to institution): AHRQ; Support for travel to meetings for the study or other purposes: AHRQ, Dr. Cottrell: Grant: AHRQ; Dr. Wasson: Grant: AHRQ; Dr. Rahman: None disclosed. Dr. Guise: Grant (money to institution): AHRQ; Provision of writing assistance, medicines, equipment, or administrative support (money to institution): AHRQ. Disclosures can also be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M12-1650.

Requests for Single Reprints: Roger Chou, MD, 3181 SW Sam Jackson Park Road, Mail Code BICC, Portland, OR 97239; e-mail, chour@ohsu.edu.

Current author addresses and author contributions are available at www.annals.org.

References

Current Author Addresses: Drs. Chou, Cottrell, Wasson, Rahman, and Guise: 3181 SW Sam Jackson Park Road, Mail Code BICC, Portland, OR 97239.

Appendix Figure. Summary of evidence search and selection.

The flow diagram summarizes the search and selection of articles addressing the following key questions: 1. Does screening for hepatitis C virus (HCV) infection in nonpregnant adults without known abnormal liver enzymes reduce mortality and morbidity due to HCV, affect quality of life, or reduce transmission of HCV? 2. What is the effectiveness of different risk- or prevalence-based methods for screening for HCV infection on clinical outcomes? 3. What is the sensitivity and number needed to screen to identify 1 case of HCV infection of different risk- or prevalence-based methods for screening for HCV infection? 4. What are the harms associated with screening for HCV infection, including diagnostic liver biopsies? Reproduced from reference 26.

* Includes hand searches and gray literature searches.

† The total number of studies included in the full report, which addresses additional key questions, is 166.