Abstract: The purpose of this investigation was to examine the effect of Herbst/multibracket appliance treatment on the upper incisor–lower lip relationship in the management of Class II, division 2 malocclusions. The study evaluated 19 successfully treated subjects using lateral head films analyzed at 3 occasions: before (T1) and after (T2) Herbst/multibracket appliance treatment and 1-year posttreatment (T3). The average treatment (T1-T2) changes showed (1) the lower lip overlap on the upper incisors was reduced from 6.0 mm to 4.2 mm (P < .001), (2) the upper incisors were proclined 15.3° (P < .001) and the lower incisors were proclined 9.6° (P < .001), (3) the overbite was reduced from 7.3 mm to 1.7 mm (P < .001), and (4) the sagittal jaw base relationship (Wits) improved from 13.5 to +0.5 mm (P < .001). The average posttreatment (T2-T3) changes showed (1) the upper incisor–lower lip relationship remained stable, (2) the upper (0.6°; P < .001) and lower (2.3°; P < .001) incisors retroclined, (3) the overbite increased (1.2 mm; P < .001), and (4) the sagittal jaw base relationship remained unchanged. In conclusion, it was found that the upper incisor–lower lip relationship was improved by Herbst/multibracket appliance treatment and remained stable during a 1-year posttreatment period in spite of minor relapses of incisor tooth positions and relationships. (Angle Orthod 2001;71:358–363.)

Key Words: Class II, division 2 malocclusion; Deep bite; Lower lip position; Herbst appliance; Roentgenographic cephalometry; Stability; Relapse

INTRODUCTION

The Class II, division 2 malocclusion is characterized by retroclined upper front teeth (at least the 2 central incisors), a deep overbite, and a Class II molar relationship.1,2 The perioral soft tissue features of the malocclusion such as the hyperactive mentalis muscle and the high lip line (defined as the lower lip covering the upper incisors)3–11 are said to be the cause of the steep upper incisor position2,3,9,12–19 as well as of the relapse frequently seen after treatment.

A Herbst/multibracket appliance combination has been shown to be most effective in the therapy of Class II, division 2 malocclusions. Class II molar and overjet/overbite corrections are accomplished by both skeletal and dental changes.20 The influence of this treatment on the soft tissues, especially on the vertical position of the lower lip in relation to the upper incisors, however, to this date has received no attention.

Thus, the aim of the present cephalometric roentgenographic investigation was to assess the effect of Herbst/multibracket appliance treatment on the upper incisor–lower lip relationship in the management of Class II, division 2 malocclusions.

MATERIALS AND METHODS

Subjects

The patient sample consisted of 19 Class II, division 2 malocclusions (8 females, 11 males) treated for an average period of 1 year and 10 months with the banded (n = 5) or the cast splint (n = 14) Herbst appliance followed by a multibracket appliance. The average pretreatment age of the subjects was 13 years, and each patient had a bilateral Class II molar relationship, retroclined upper incisors, and a deep overbite. After treatment, all subjects exhibited Class I dental arch relationships with a normal overjet and overbite. In 12 subjects, posttreatment retention was performed with a lower cuspid-to-cuspid retainer and an upper Hawley plate. The remaining 7 subjects were retained with an activator or a positioner.

The lateral head films of all subjects were analyzed on 3 occasions: before (T1) and after (T2) Herbst/multibracket

*Assistant Professor, Department of Orthodontics, University of Giessen, Giessen, Germany.

*Professor and Chairman, Department of Orthodontics, University of Giessen, Giessen, Germany.

Corresponding author: Prof Dr Hans Pancherz, Department of Orthodontics, Faculty of Dentistry, Justus-Liebig-Universität of Giessen, Schlangenzahl 14, D-35292 Giessen, Germany.

(e-mail: hans.pancherz@dentist.med.uni-giessen.de).

© 2001 by The EH Angle Education and Research Foundation, Inc.
INCISOR–LIP RELATIONSHIP IN HERBST TREATMENT

Angle Orthodontist, Vol 71, No 5, 2001

FIGURE 1. Reference points and lines used in the cephalometric analysis. Reference point definitions: l, lip point—the contact point between the upper and lower lips; ms, molar superius—the mesiobuccal cusp tip of the upper first molar; mi, molar inferius—the mesiobuccal cusp tip of the lower first molar; A0, A-point projection—the perpendicular projection of point A on the occlusal line; B0, B-point projection—the perpendicular projection of point B on the occlusal line; spa, spina nasalis anterior—the apex of spina nasalis anterior; spp, spina nasalis posterior—the point of intersection of palatum durum, palatum molle and fossa pterygopalatina.

FIGURE 2. a. Measured variables 1–5 used in the cephalometric analysis. b. Measured variables 6–11 used in the cephalometric analysis.

Measured variables

Variable 1. Lower lip position: the relation of the lower lip to the upper incisors measured by the vertical distance between the lip point (l) and incision superius (is) perpendicular to the occlusal line (OL).

Variable 2. Overbite: the distance between incision superius (is) and incision inferius (ii) perpendicular to the occlusal line (OL).

Variable 3. Upper incisor angulation: the angle ILs/NL.

Variable 4. Lower incisor angulation: the angle ILi/ML.

Variable 5. Interincisal angle: the angle ILs/ILi.

Variable 6. Vertical upper incisor position: the distance from is to NL.

Variable 7. Vertical upper molar position: the distance from ms to NL.

Variable 8. Vertical lower incisor position: the distance from ii to ML.

Variable 9. Vertical lower molar position: the distance from mi to ML.

Variable 10. Vertical jaw relation: the interjaw base angle NL/ML.

Variable 11. Sagittal jaw relation—Wits: the distance between the points A0 and B0. A positive (+) value means that A0 is positioned in front of B0. A negative (−) value implies that A0 is positioned behind B0.

Statistical methods

Statistical calculations were performed with the software Microsoft Excel and SPSS for Windows. The arithmetic mean (mean) and standard deviation (SD) were calculated for each cephalometric variable. The t-tests for paired samples were used to assess the differences between registrations performed at different occasions (T1, T2, T3). The levels of significance utilized were $P < .05$ (*), $P < .01$ (**), and $P < .001$ (***) ; $P \geq .05$ was considered as not significant (ns). All registrations were done twice, and the mean value was used for the evaluations.

Method error

The total method error for double registrations of each variable was calculated. The error comprised the identification of the reference points and lines, the tracing procedure, and the measurements of angles and distances. In the method error (ME) calculations, the following formula of Dahlberg21 was used:

$$ ME = \sqrt{\frac{\sum d^2}{2n}} $$

Appliance treatment and 1-year posttreatment (T3). The reference points and lines used are shown in Figure 1. The measured variables are seen in Figure 2a,b.
TABLE 1. Method Error Evaluation Upon Double Registrations in 19 Class II, Division 2 Malocclusions Treated With Herbst/Multibracket Appliance (T1, Before Treatment; T2, After Treatment; T3, 1 Year After Treatment)

<table>
<thead>
<tr>
<th>Variable</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T2±T1</th>
<th>T3±T2</th>
<th>T3±T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. l-ns (mm)</td>
<td>0.46</td>
<td>0.46</td>
<td>0.43</td>
<td>0.75</td>
<td>0.56</td>
<td>0.18</td>
</tr>
<tr>
<td>2. ii-ns (mm)</td>
<td>0.56</td>
<td>0.32</td>
<td>0.23</td>
<td>0.66</td>
<td>0.34</td>
<td>0.08</td>
</tr>
<tr>
<td>3. lls/nl (degrees)</td>
<td>1.00</td>
<td>1.16</td>
<td>0.95</td>
<td>1.65</td>
<td>1.12</td>
<td>0.23</td>
</tr>
<tr>
<td>4. li/lmi (degrees)</td>
<td>1.15</td>
<td>1.06</td>
<td>1.25</td>
<td>1.18</td>
<td>1.64</td>
<td>0.24</td>
</tr>
<tr>
<td>5. ili/ml (degrees)</td>
<td>1.37</td>
<td>1.25</td>
<td>1.34</td>
<td>1.45</td>
<td>1.65</td>
<td>0.33</td>
</tr>
<tr>
<td>6. ms-nl (mm)</td>
<td>0.49</td>
<td>0.52</td>
<td>0.60</td>
<td>0.61</td>
<td>0.79</td>
<td>0.16</td>
</tr>
<tr>
<td>7. is-nl (mm)</td>
<td>0.39</td>
<td>0.37</td>
<td>0.67</td>
<td>0.46</td>
<td>0.81</td>
<td>0.32</td>
</tr>
<tr>
<td>8. mi-ml (mm)</td>
<td>0.49</td>
<td>0.39</td>
<td>0.40</td>
<td>0.57</td>
<td>0.65</td>
<td>0.11</td>
</tr>
<tr>
<td>9. ii-ml (mm)</td>
<td>0.88</td>
<td>0.35</td>
<td>0.41</td>
<td>0.99</td>
<td>0.48</td>
<td>0.26</td>
</tr>
<tr>
<td>10. mL/ml (degrees)</td>
<td>0.61</td>
<td>0.60</td>
<td>0.77</td>
<td>0.65</td>
<td>0.88</td>
<td>0.18</td>
</tr>
<tr>
<td>11. Wits (mm)</td>
<td>0.82</td>
<td>0.57</td>
<td>0.44</td>
<td>1.09</td>
<td>0.54</td>
<td>0.11</td>
</tr>
</tbody>
</table>

TABLE 2. Cephalometric Records (Mean, SD) in 19 Class II, Division 2 Malocclusions Treated With the Herbst/Multibracket Appliance (T1, Before Treatment; T2, After Treatment; T3, 1 Year After Treatment)

<table>
<thead>
<tr>
<th>Variable</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T2±T1</th>
<th>T3±T2</th>
<th>T3±T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. l-ns (mm)</td>
<td>6.0</td>
<td>0.4</td>
<td>4.2</td>
<td>0.9</td>
<td>4.1</td>
<td>0.5</td>
</tr>
<tr>
<td>2. ii-ns (mm)</td>
<td>7.3</td>
<td>3.8</td>
<td>1.7</td>
<td>0.5</td>
<td>2.9</td>
<td>1.1</td>
</tr>
<tr>
<td>3. lls/nl (degrees)</td>
<td>95.6</td>
<td>7.3</td>
<td>110.9</td>
<td>0.3</td>
<td>110.3</td>
<td>0.3</td>
</tr>
<tr>
<td>4. li/lmi (degrees)</td>
<td>94.3</td>
<td>7.8</td>
<td>103.9</td>
<td>2.0</td>
<td>101.6</td>
<td>0.9</td>
</tr>
<tr>
<td>5. ili/ml (degrees)</td>
<td>149.9</td>
<td>13.1</td>
<td>124.7</td>
<td>0.3</td>
<td>128.9</td>
<td>0.5</td>
</tr>
<tr>
<td>6. ms-nl (mm)</td>
<td>21.1</td>
<td>1.6</td>
<td>22.6</td>
<td>0.1</td>
<td>23.3</td>
<td>0.6</td>
</tr>
<tr>
<td>7. is-nl (mm)</td>
<td>28.2</td>
<td>0.9</td>
<td>27.8</td>
<td>1.6</td>
<td>28.4</td>
<td>1.1</td>
</tr>
<tr>
<td>8. mi-ml (mm)</td>
<td>31.6</td>
<td>0.5</td>
<td>33.8</td>
<td>1.0</td>
<td>34.2</td>
<td>1.5</td>
</tr>
<tr>
<td>9. ii-ml (mm)</td>
<td>40.9</td>
<td>3.3</td>
<td>40.5</td>
<td>3.1</td>
<td>41.4</td>
<td>4.0</td>
</tr>
<tr>
<td>10. mL/ml (degrees)</td>
<td>20.9</td>
<td>2.5</td>
<td>20.6</td>
<td>1.9</td>
<td>19.5</td>
<td>1.9</td>
</tr>
<tr>
<td>11. Wits (mm)</td>
<td>3.5</td>
<td>3.9</td>
<td>0.5</td>
<td>1.5</td>
<td>0.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

where \(d \) is the difference between 2 registrations of a pair and \(n \) is the number of the double registrations (\(n = 19 \)).

The results of the calculations are seen in Table 1.

RESULTS

The cephalometric records from before, after, and 1 year after Herbst treatment are presented in Table 2. The treatment and posttreatment changes are shown in Table 3. The individual changes in lower lip position are given in Figure 3, and the mean changes of selected variables are given in Figures 4 through 8.

TREATMENT CHANGES (T2-T1)

Variable 1 (lower lip position, l-ns). Lower lip overlap on the upper incisors was reduced in 18 of the 19 subjects (mean: 1.8 mm; \(P < .001 \)).

Variable 2 (overbite, ii-ns). Overbite was reduced in all subjects (mean: 5.6 mm; \(P < .001 \)).

Variables 3–9 (tooth positions). Upper and lower incisors were proclined in all subjects. The average proclination was 15.3° (\(P < .001 \)) for the upper and 9.6° (\(P < .001 \)) for the lower incisors. The incisal angle (Il/s/Il/i) was reduced in all subjects (mean: 25.2°; \(P < .001 \)). Vertical upper incisor position remained unchanged on average. The vertical distance of is to NL increased in 7 and decreased in 10 of
the 19 subjects. The vertical upper molar distance ms to NL increased in 16 of the 19 subjects (mean: 1.5 mm; P < .01). The vertical lower incisor distance ii to ML decreased in 10 and increased in 6 of the 19 subjects (mean: 0.4 mm; P < .001). The vertical lower molar distance mi to ML increased in all subjects (mean: 2.2 mm; P < .001).

Variable 10 (vertical jaw relation, NL/ML). The angle NL/ML remained unchanged on average. It increased in 9 and decreased in 7 of the 19 subjects.

Variable 11 (sagittal jaw relation—Wits). Sagittal jaw base relationship (Wits) was improved to a Class I relationship in 18 of the 19 subjects (mean: 3.0 mm; P < .001).

Posttreatment changes (T3-T2)

Variable 1 (lower lip position, l-is). Lower lip overlap on the upper incisors remained unchanged on average (Figures 3 and 4). It increased in 8 and decreased in 8 of the 19 subjects.

Variable 2 (overbite, ii-is). Overbite increased in 17 of the 19 subjects (mean: 1.2 mm; P < .001).

Variables 3–9 (tooth positions). The upper incisors retroclined in 12 of the 19 subjects (mean: 0.6°; P < .001) and the lower incisors retroclined in 16 of the 19 subjects (mean: 2.3°; P < .001). The interincisal angle (ILs/ILi) increased in 16 of the 19 subjects (mean: 4.2°; P < .001).

The vertical upper incisor distance is to NL increased in 11 of the 19 cases (mean: 0.6 mm; P < .001). The vertical upper molar distance ms to NL increased in 11 of the 19 subjects (mean: 0.7 mm; P < .001). The vertical lower incisor distance ii to ML increased in 13 of the 19 subjects (mean: 0.9 mm; P < .001). The vertical lower molar distance mi to ML increased in 10 of the 19 cases (mean: 0.4 mm; P < .01).

Variable 10 (vertical jaw relation). The inter jaw base angle (ML/NL) decreased in 15 of the 19 cases (mean: 1.1°; P < .001).

Variable 11 (sagittal jaw relation—Wits). The sagittal jaw base relationship (Wits) remained unchanged on average. The Wits value increased in 8 and decreased in 11 of the 19 subjects.

DISCUSSION

Long-term stability of treated Class II, division 2 malocclusions is, among other things, said to be related to a
In the present investigation, the overbite was reduced on average from 7.3 mm to 1.7 mm but then relapsed to 2.9 mm. The net overbite reduction was thus 59%, which is relatively high in comparison with other studies. The overbite reduction was mainly accomplished by proclination of the maxillary and mandibular incisors, extrusion of the lower molars, and downward tilt of the mandibular occlusal plane. While proclination of the lower incisors usually is undesirable in orthodontics, it is an advantage in the correction of the deep bite in Class II, division 2 malocclusions since the teeth are in a retroclined position to begin with.

In the treatment of the present 19 cases, the upper incisors were, in most cases, proclined with a multibracket appliance before the Herbst appliance was placed. This decompensation of upper incisor position allowed free lower incisor proclination during the mandibular advancement procedure with the Herbst telescope mechanism.

Relapse in overbite has been found to be significantly correlated with relapse of the interincisal angle. Exaggerated proclination of the lower incisors in Class II, division 2 patients would therefore result in a reduction of the interincisal angle, which will contribute to posttreatment overbite stability. Berg considered an interincisal angle of less than 140° after treatment to be favorable for long-term stability. In the present sample, the interincisal angle was reduced from 150° to 125° during treatment and increased only 4° after treatment.

Long-term posttreatment stability of the occlusion is certainly also dependent on balanced muscle forces acting on the teeth. A lower lip coverage will challenge this balance. Therefore, in the correction of Class II, division 2 cases, it is necessary to retain the treatment result over a longer period of time to get a soft tissue adaptation.

Selwyn-Barnett recommends that the lower arch be retained permanently when any tendency to an increase in the interincisal angle is anticipated. A fixed cuspido-to-cuspido lingual retainer behind the lower front teeth ensures a stable antero-posterior and transverse position of the lower labial segment, which is the foundation of the correct incisor relationship. Crowding of the lower labial segment with concomitant reduction of the intercanine width would lessen the transverse support for the upper arch. This effect is potentially more serious in patients with tight perioral musculature, as seen in Class II, division 2 malocclusions. In spite of the lower cuspido-to-cuspido retainer in the present study, the inclination of the lower incisors recovered by an average of 2.3° during the follow-up period. This change in incisor position was certainly the cause of the posttreatment increase in the interincisal angle and in the small overbite relapse seen.

CONCLUSION

In conclusion, it was found that in Class II, division 2 malocclusions, the upper incisor–lower lip relationship was...
improved by Herbst/multibracket appliance treatment and remained stable during a 1-year posttreatment period in spite of minor relapses of incisor tooth position and relationships. Postretention follow-up studies are, however, necessary to assess the long-term effect of the Herbst/multibracket appliance approach on the incisor–lower lip relationship.

REFERENCES

2. Ridley DR. Some factors concerned with the reduction of excessive incisor overbite in Angle’s Class II division 2 malocclusion. Trans Brit Soc Study Orthod. 1960;118:140.