Comparison of Skeletal and Dental Morphology in Asymptomatic Volunteers and Symptomatic Patients with Bilateral Disk Displacement without Reduction

Ioanna K. Gidarakou, DDSa; Ross H. Tallents, DDSb; Stephanos Kyranides, DDS, PhDc; Scott Stein, DMDd; Mark E. Moss, DDS, PhDe

Abstract: The purpose of this study was to evaluate the effect of bilateral disk displacement without reduction (BDDN) on the skeletal and dental pattern of affected individuals. There were 59 symptomatic female patients and 46 asymptomatic normal female volunteers. All study participants had bilateral high-resolution magnetic resonance imaging scans in the sagittal (closed and open) and coronal (closed) planes to evaluate the temporomandibular joints. Linear and angular cephalometric measurements were taken to evaluate the skeletal, denture base, and dental characteristics of the two groups. A smaller cranial base length (Ba-Na) was found in the symptomatic group. The facial plane angle was smaller, and the angle of convexity was larger because of the retropositioned mandible. The lower denture base was also retruded as shown by the smaller SNB angle. The BDDN group exhibited a larger overjet. The mandibular plane angle was steeper, the Y-axis was more vertical (S-Gn to FH), the posterior ramal height (Ar-Go) was shorter, and the angle between the mandibular and the palatal plane (PP to MP angle) was increased in the symptomatic group. No significant dental differences were found. This study showed that alterations in skeletal morphology might be associated with BDDN. This study suggests that subjects with BDDN may manifest altered craniofacial morphology. The clinician should be aware of that possibility, especially for the growing patients and the surgical candidates. (\textit{Angle Orthod} 2004;74:684–690.)

Key Words: Joint; Cephalometrics; Skeletal; Nonreducing; Morphology

INTRODUCTION

Temporomandibular joint disorder (TMD) is a collective term embracing a number of clinical problems that involve the masticatory musculature, the temporomandibular joint (TMJ), and associated structures or both.1 Disk displacement (DD) with reduction (DDR) is frequently associated with a clicking sound, and DD without reduction (DDN) is often associated with limitation of jaw opening.2 Previous studies have suggested that DDN may progress to osteoarthritis in the TMJ.3–6

Autopsy studies in both young and mature adults show DD in 10–32% in the general population.7,8 Several studies have suggested that DD occurs in asymptomatic subjects with a prevalence ranging from 10–33%.9–15

A high prevalence of DD in asymptomatic volunteers (AVs) is not unique to the TMJ because magnetic resonance imaging (MRI) studies of asymptomatic subjects in the knee, cervical spine, and lumbar spine indicate similar disease prevalences in asymptomatic subjects.16–22 These studies demonstrate that DD can be present in patients without clinical signs and symptoms. On the other hand, it has been shown, that not all TMJ pain, clicking, and limited jaw motion can be related to DD in symptomatic patients. Pasani et al23 found that 78% of their symptomatic TMD sample had unilateral or bilateral DD whereas 22% had bilaterally normal TMJs. They also concluded that the structural
BILATERAL DISK DISPLACEMENT WITHOUT REDUCTION

685

Angle Orthodontist, Vol 74, No 5, 2004

FIGURE 1. Cephalometric landmarks used.

TABLE 1. Cranial Base Measurements

<table>
<thead>
<tr>
<th>Measurement</th>
<th>AV-N</th>
<th>BDDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-Na</td>
<td>73.06</td>
<td>71.89</td>
</tr>
<tr>
<td>Ba-Na</td>
<td>110.1</td>
<td>107.9*</td>
</tr>
<tr>
<td>Ba-S</td>
<td>47.18</td>
<td>46.08</td>
</tr>
<tr>
<td>Ba-S-Na</td>
<td>131.7</td>
<td>131.3</td>
</tr>
</tbody>
</table>

* P values equal to or less than .05 were considered significant.

MATERIALS AND METHODS

Materials

There were 46 normal female AVs and 59 symptomatic age-matched females with BDDN. The age range was 28.3 ± 6.7 for the AVs, whereas the mean age of the symptomatic subjects was 28.6 ± 10.2. All study participants read and signed an informed consent before the study initiation. The form and the study were approved by the Research Subjects Review Board of the University of Rochester.

All AVs answered a solicitation for examination and inclusion in the study. They were all examined by one investigator and were accepted in the study after completion of:

- A TMJ subjective questionnaire documenting the absence of jaw pain, joint noise, locking, and positive history of TMD.
- A clinical TMJ and dental examination for signs and symptoms commonly associated with TMD or internal derangement.

All symptomatic subjects had localized jaw joint pain and pain on movement or when eating. Vertical opening and right and left mandibular movements were measured and recorded. The masseter, anterior, middle, and posterior temporalis, and temporalis tendon area were digitally palpated. All AVs demonstrated a maximal opening of at least 40 mm. The asymptomatic and symptomatic subjects were not blinded to the examiner.

All study participants had bilateral high-resolution MRI scans in the sagittal (closed and open) and coronal (closed) planes to evaluate the TMJs as described by Katzberg et al40 and Westesson et al.40 Each study participant was classified as AV or symptomatic BDDN.

All study participants had lateral cephalograms with the teeth in centric occlusion position and with Frankfort horizontal parallel to the floor. All cephalograms were taken on the same radiographic machine at the Orthodontic Clinic set for standardized exposure.

Null hypothesis

There are no statistically significant differences between skeletal, denture base, and dental characteristics of symptomatic BDDN patients compared with a sample of individuals with bilateral normal asymptomatic TMJs.

Cephalometric measurements

Figure 1 shows the cephalometric points used. Tables 1–5 summarize the angular and linear cephalometric measurements used in this study. These were categorized as cranial base measurements, profile analysis, denture base, dental pattern, and vertical relationship measurements.
TABLE 2. Profile Analysis

<table>
<thead>
<tr>
<th>Measurements</th>
<th>AV-N</th>
<th>BDDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH to Na-Pg</td>
<td>89.18</td>
<td>87.62*</td>
</tr>
<tr>
<td>FH to Na-A</td>
<td>90.71</td>
<td>90.32</td>
</tr>
<tr>
<td>Na-A-Pog</td>
<td>2.99</td>
<td>5.69*</td>
</tr>
</tbody>
</table>

* P values equal to or less than .05 were considered significant.

TABLE 3. Denture Base Measurements

<table>
<thead>
<tr>
<th>Measurements</th>
<th>AV-N</th>
<th>BDDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS-PNS</td>
<td>56.3</td>
<td>56.24</td>
</tr>
<tr>
<td>SNA</td>
<td>81.81</td>
<td>80.52</td>
</tr>
<tr>
<td>SNB</td>
<td>79.18</td>
<td>76.66*</td>
</tr>
<tr>
<td>ANB</td>
<td>2.64</td>
<td>3.86</td>
</tr>
<tr>
<td>A-B to FP</td>
<td>-4.99</td>
<td>-6.58</td>
</tr>
</tbody>
</table>

* P values equal to or less than .05 were considered significant.

TABLE 4. Denture Pattern

<table>
<thead>
<tr>
<th>Measurements</th>
<th>AV-N</th>
<th>BDDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH to OP</td>
<td>5.14</td>
<td>5.67</td>
</tr>
<tr>
<td>U1 to L1</td>
<td>128.2</td>
<td>128.7</td>
</tr>
<tr>
<td>U1 to PP</td>
<td>109.2</td>
<td>107.7</td>
</tr>
<tr>
<td>U1 to FH</td>
<td>110.7</td>
<td>109.8</td>
</tr>
<tr>
<td>U1 to S-Na</td>
<td>101.8</td>
<td>99.9</td>
</tr>
<tr>
<td>U1 to A-Pog</td>
<td>23.3</td>
<td>25.59</td>
</tr>
<tr>
<td>U1 perpendicular to A-Pog</td>
<td>7.38</td>
<td>8.41</td>
</tr>
<tr>
<td>L1 to MP</td>
<td>5.89</td>
<td>4.21</td>
</tr>
<tr>
<td>L1 to OP</td>
<td>25.1</td>
<td>25.79</td>
</tr>
<tr>
<td>L1 to A-Pg</td>
<td>27.7</td>
<td>25.57</td>
</tr>
<tr>
<td>L1 perpendicular to A-Pog</td>
<td>4.14</td>
<td>4.06</td>
</tr>
<tr>
<td>Overbite (perpendicular to FH)</td>
<td>2.88</td>
<td>3.02</td>
</tr>
<tr>
<td>Overjet (parallel to FH)</td>
<td>3.07</td>
<td>4.18*</td>
</tr>
</tbody>
</table>

* P values equal to or less than .05 were considered significant.

Statistical method

The analysis of variance was used to reveal any statistically significant differences between the control group and the experimental group. All subjects were matched for age. The P value was calculated for each of the variables with a level of significance for each test established at .05.

Error of measurement

Errors in landmark localization during tracing were evaluated by retracing 20 cephalograms in the experimental and control group. The reliability of tracing, landmark identification, and analytical measurements had an intraclass correlation coefficient greater than .92.

RESULTS

Tables 1–5 summarize the findings of the measurements. Table 1 demonstrates that the cranial base length (Ba-Na) was smaller in the BDDN group. In the profile analysis (Table 2) the facial plane angle was smaller and the angle of convexity larger in the symptomatic group. The only significant difference found in the denture base measurements was a smaller SNB angle as seen in Table 3. The overjet was increased in the BDDN subjects and that was the only significant difference found in the denture pattern measurements (Table 4).

The measurements of the vertical relationships showed numerous differences (Table 5). There was a steeper mandibular plane angle, a more vertical (larger) Y-axis (S-Gn to FH angle), a shorter ramal height (Ar-Go), and an increased divergence of the palatal and mandibular planes (PP to MP angle) in the BDDN subjects. The significant measurements are shown in Figures 2–5.

DISCUSSION

A high prevalence of DD in AVs has been suggested. Westesson et al. found 15% of their AVs to have unilateral...
DD using TMJ arthrography. Tallents et al in a study of evaluation of TMJ sounds in AVs found that 24% had one or two joints with DD as diagnosed by MRI. Ribeiro et al found the prevalence of DD in asymptomatic children and young adults to be 34%, whereas 86% of the symptomatic temporomandibular disorder patients had DD. Their results showed that 13.8% had bilateral symptomatic, but normal joints, 28% had unilateral DD, and 58% had bilateral DD. Kircos et al found similar results (32%) in AVs.

A high prevalence of DD in AVs is not unique to the TMJ. MRI studies of asymptomatic subjects in the knee, cervical spine, and lumbar spine indicate similar disease prevalences in asymptomatic subjects in those body parts as well. Brunner et al showed that half of the asymptomatic athletes included in the study had significant baseline knee MRI scan abnormalities. Oberg et al macroscopically examined the right TMJs of 155 cadavers of different ages regarding the shape, size, and appearance of the joint surfaces. They found that with increasing age the number of joints with local changes in the shape, remodeling, or arthritic changes of the articular surfaces increased. The arthritic changes were significantly more prevalent in women.

Previous studies have suggested that DDN may progress to osteoarthritis in the TMJ. Eriksson and Westesson suggested that DDR and DDN are two different entities and that DDN seems to be a more advanced condition and may in some cases be a precursor of osteoarthritis. Yamada et al have also suggested that there is a correlation between degenerative changes and DDN.

DD has been suggested to affect skeletal morphology. In this study we evaluated the effect of BDDN on the skeletal and dental pattern of the affected individuals. There was a smaller cranial base length (Ba-Na) in the BDDN group. In our study with BDDR we also found differences in the cranial base, namely shorter anterior (S-Na) and total (Ba-Na) cranial base lengths. Nebbe et al found a shorter posterior cranial base length and also a more acute cranial base angle, which was not significantly different in our group, but they did not clarify if their subjects had DD with or without reduction.

The mandible of the symptomatic subjects was retruded in relation to the forehead as seen by the smaller facial plane angle and the larger angle of convexity. The mandibular denture base was also retruded as demonstrated by the smaller SNB angle and there was increased overjet in our BDDN sample. These findings agree with previously published studies.

In our study of patients with BDJD, the affected individuals exhibited smaller facial plane angle and SNB angle but also smaller Lande’s and SNA angles. Bosio et al found a smaller mean SNB angle in patients with bilateral DD compared with AVs. Schellhas et al in their study of children 14 years of age or younger concluded that TMJ disarrangements may contribute to the development of retrognathia, with or without asymmetry. Ninety-three percent
of the retrognathic subjects were found to have DD, generally bilateral. Dibbets et al28 suggested that TMJ dysfunction might be associated with altered growth of the mandible and may cause retrognathia in children.

There were numerous significant differences in the vertical relationships. The mandibular plane angle was steeper, the Y-axis more vertical, the posterior ramal height (Ar-Go) was shorter, and there was a divergence of the palatal and mandibular plane indicative of posterior mandibular rotation in the symptomatic group. We found similar findings (steeper mandibular plane and shortened ramal height) in our study with BDDR patients and BDJD patients (steeper mandibular plane, decreased ramal height, divergence of mandibular plane to palatal plane).31,32 Dibbets et al28 and Nebbe et al35 have also reported steeper mandibular plane and shorter ramal height in children and adolescents presenting with degenerative joint disease and DD, respectively. Nebbe et al25 also found an increased mandibular and palatal plane relative to sella-nasion and posterior rotation of the mandible.

Our study agrees with previous studies, which have suggested that DD can affect skeletal morphology and symmetry. The present study’s findings are more severe than the findings of our previous study of BDDR patients31 and less severe than our findings of BDJD patients,32 which can be expected because DD may progress to DJD. Bosio et al30 also suggested that symptomatic TMD patients with BDD have a retropositioned mandible.

Link and Nickerson2 and Schellhas et al27 have suggested that there is a cause and effect relationship between DD and facial growth. Schellhas et al27 concluded that TMJ derangements are both common in children and may contribute to the development of retrognathia, with or without asymmetry. In cases of lower face asymmetry, the chin was uniformly deviated toward the smaller or more degenerated TMJ. They proposed that in the growing facial skeleton, DD either retards or arrests condylar growth, which results in decreased vertical dimension in the proximal mandibular segment(s) with ultimately mandibular deficiency or asymmetry.27 Nebbe et al25 have suggested that adolescent female patients presenting for orthodontic treatment with bilateral DD show numerous angular and linear cephalometric differences compared with age-matched female controls indicative of mandibular posterior rotation and retrognathia. Dibbets et al28 showed that children with symptoms of dysfunction formed a morphologically clearly recognizable group. Their profile was more Class II and had a shorter corpus and ramus with decreased posterior facial height. They concluded that TMJ dysfunction might be associated with the growth of the mandible.28 Brand et al29 indicated that patients with DD had significantly shorter maxillary and mandibular lengths compared with asymptomatic normal individuals with normal TMJs. That investigation did not distinguish between unilateral and bilateral DD and could not account for any asymmetries because the right and left landmarks in the cephalometric radiograph were averaged.

Trpkova et al26 investigated the amount of craniofacial asymmetry in female orthodontic patients with unilateral or bilateral TMJ DD compared with normal controls without DD using posteroanterior films. Female subjects with bilateral DD had significantly greater asymmetry in the vertical position of the antegonion. If the DD was more advanced on one side, then the ipsilateral ramus was shorter resulting in significant asymmetry of the mandible. The authors concluded that a female patient with unilateral or bilateral DD might present with or develop a vertical mandibular deficiency.26

Increased prevalence of DD has been found in patients with mandibular retrognathia presenting for orthognathic surgery. Link and Nickerson2 studied 39 patients referred for orthognathic surgery, 38 of who were found to have DD before surgery. All their open-bite patients and 88% of the patients with Class II malocclusion had bilateral DD. They suggested that DD may be a contributing factor in the development of dentofacial deformities and that new loading of deranged joints after orthognathic surgery may be a cause of a new arthrosis and skeletal relapse suggesting a progression of TMJ pathology. They suggested that DD should be suspected in individuals with sagittal mandibular deficiency, vertical ramus deficiency, or a unilateral sagittal deficiency. The high degree of association of DD with mandibular deficiency suggests that DD may have a role in causing these deformities. That is, loss of condylar height and/or growth secondary to the DD caused or worsened the horizontal or vertical ramus mandibular deficiency.2 Schellhas et al33 in their retrospective study of 100 consecutive orthognathic surgery candidates found that DD was prevalent especially in patients who exhibited change in their facial contour in the year before the evaluation. The degree of joint degeneration directly paralleled the severity of retrognathia. They concluded that TMJ DD is common in cases of mandibular retrusion and leads to the facial morphology in a high percentage of patients.

CONCLUSIONS

The results of this study show that alterations in skeletal morphology may be associated with BDDN. The skeletal differences are more pronounced in patients with BDDN than in patients with BDDR and less severe than in patients with BDJD as reported by Gidarakou et al31,32 The present study agrees with previous studies suggesting that DD may affect the skeletal morphology and especially the mandibular position and rotation. The underlying mechanisms causing DD or the mechanisms that cause that skeletal alteration are yet to be identified. Because the present and previous studies suggest that BDDN may affect skeletal morphology and growth pattern, the clinician should be...
aware of these possibilities especially for the growing patient and the orthognathic surgery candidate.

REFERENCES

35. Qadan S, Macfar DJ, Tallents RH, Kyrkanides S, Moss ME. The effect of surgically induced anterior disk displacement of the temp-

