To the Editor: I read with great interest the article by Brown et al. (2) in which they documented concisely their results in the treatment of patients by percutaneous trigeminal nerve compression. As they pointed out, the pear-shaped configuration of the inflated Fogarty balloon is an indication of accurate balloon position. This pear shape results from the restriction of the uniform enlargement of the balloon by the petrous bone inferiorly and by the firm surrounding dural edge superiorly. Mullan and Lichtor (3) suggested that a pear-shape configuration of the balloon signifies that a “good squeeze” on the Gasserian ganglion has been achieved. They found that this required from 0.5 to 1.0 ml of contrast material. Belber and Rak (1) also described the pear-shaped configuration with a small nipple protruding toward the posterior fossa.

Although Brown et al. (2) use intraluminal balloon pressure as a parameter for determining the adequacy of tissue compression, most of us who perform this procedure depend only on the pear shape of the balloon to confirm both balloon position and the adequacy of compression. Because the nipple end of the pear is directed toward the posterior fossa, it is best seen on the lateral view of the skull. If the x-ray beam is directed along the needle tract or in the anteroposterior direction, the larger portion of the contrast-filled balloon will obscure the smaller nipple. Figure 1C in the article by Brown et al. (2) suggests that there is an air-fluid level in the balloon rather than a pear-shaped contrast filled balloon.

Mullan and Lichtor (3) as well as Belber and Rak (1) recommend replacing the air space in the catheter with contrast before it is used. If the wire stylet is left in the Fogarty catheter, there will be air in the balloon, especially when the longer catheters are used. I have found that by using a 40-cm long 4-French Fogarty embolectomy catheter, I am able to remove the air so that the balloon is fully filled with contrast during the procedure (Fig. 1). The contrast in the uninflated catheter permits it to be seen on the lateral projection of the skull before inflation of the balloon. Using this technique, the surgeon should be able to rely on the shape of the balloon.

Erik Van de Kelft
Christian De La Porte
Edegem, Belgium

REFERENCES: (1-2)


Percutaneous Trigeminal Nerve Compression for Treatment of Trigeminal Neuralgia: Results in 50 Patients

Arthur M. Gerber
Toledo, Ohio

REFERENCES: (1-3)