The Laryngeal Specifications of Fricatives

Bert Vaux

Phonologists have traditionally assumed that the unmarked laryngeal state of fricatives is to be unaspirated ([− spread glottis]). However, the data analyzed here, which are drawn from Armenian, Greek, Pali, Sanskrit, Spanish, and Thai, suggest that in their unmarked state voiceless fricatives are in fact [+ spread glottis], whereas voiced fricatives are [− spread glottis].

Keywords: postnasal voicing, laryngeal features, fricatives, cluster assimilation, Armenian, Sanskrit

Though laryngeal features have been a central concern of phonologists for more than 25 years (see Kim 1970, Halle and Stevens 1971, Thráinsson 1978, Iverson 1983, Keating 1984, Lombardi 1991, Blevins 1993, Kingston and Diehl 1994, Iverson and Salmons 1995), little attention has been given to the laryngeal specifications of fricatives. Halle and Stevens (1971) suggest that fricatives are generally [− spread glottis] (roughly equivalent to “unaspirated” in traditional terms), but can exceptionally be [+ spread], as in Burmese. The same view is tacitly accepted by many phonologists and phoneticians (see, e.g., Maddieson 1984, Catford 1988).

Recent phonetic work by among others Kingston (1990) and Stevens (1991) has suggested, however, that at least voiceless fricatives are generally produced with a spread glottis. According to Stevens, a voiceless fricative cannot be produced without spreading the glottis, because this glottal adjustment is necessary in order to build up sufficient pressure behind the constriction formed by the primary articulator for the fricative. On the basis of this observation, Halle (1995) proposes that all fricatives are [+ spread]. Halle’s proposal also encounters a number of problems, however. It is difficult, for example, to distinguish Burmese plain s from aspirated sʰ, both of which must be [+ spread] in his model. Halle’s generalization also fails to account for Catford’s observation that voiced obstruents are accompanied by a narrowing of the glottis (1977:112).

In this article I propose a system of laryngeal specifications that accounts both for the phonetic observations of Kingston, Stevens, and Catford and for the phonological behavior of fricatives in a number of languages with rich systems of laryngeal contrasts: the New Julfa dialect of Armenian, Pali, Sanskrit, Greek, and Thai. The phonological phenomena to be considered here strongly suggest that the unmarked specification for voiceless fricatives is [+ spread], and the specification for voiced fricatives is [− spread].

Many thanks to the following, none of whom necessarily agree with the claims I make here, for helpful comments on earlier versions of this article: Andrea Calabrese, Morris Halle, Kevin Herwig, Javier Martin-Gonzalez, Ken Stevens, Patrick Taylor, and audiences at the 1996 annual meeting of the Linguistic Society of America, the University of Pittsburgh, and Harvard University.

Linguistic Inquiry, Volume 29, Number 3, Summer 1998
497–511
© 1998 by the Massachusetts Institute of Technology
1 Laryngeal Assimilation in Clusters

The first set of data comes from the behavior of consonant clusters in the Armenian dialect of New Julfa (Vaux, forthcoming), which is now spoken only by a few older Armenian natives of Isfahan. Like Sanskrit, this dialect has a four-way laryngeal contrast in its stop system, represented in (1).\(^1\)

\[
\begin{array}{cccccccccc}
& b & b^h & p & p^h & t & t^h & s & z & n \\
\text{(1) New Julfa consonant system} & d & d^h & t & t^h & s & z & n & d^h & t & t^h & s & 3 \\
g & g^h & k & k^h & x & 3 \\
& h & t & l & \lambda \\
\end{array}
\]

1.1. The New Julfa Future Morpheme

New Julfa forms the future tense by adding the prefix \(k\)- to the present subjunctive. This \(k\)-surfaces as \(k\)- before vowels and plain voiceless consonants (2a), \(g\)- before plain voiced consonants (2b), \(k^h\)- before voiceless aspirates and voiceless fricatives (2c), and \(g^h\)- before voiced aspirates (2d).

\[
\begin{array}{lll}
\text{(2) Underlying form} & \text{Surface form} & \text{Gloss} \\
\text{a.} & k\text{-}erth^h\text{-a-m} & k\text{erth}^h\text{am} & \text{I will go} \\
& k\text{-}t\text{-a-m} & k\text{t}^h\text{am} & \text{I will give} \\
& k\text{-}kien\text{-a-m} & k\text{kien}^h\text{am} & \text{I will exist} \\
\text{b.} & k\text{-}bzz\text{-a-m} & g\text{bzz}^h\text{am} & \text{I will buzz} \\
& k\text{-}l\text{-a-m} & g\text{l}^h\text{am} & \text{I will cry} \\
& k\text{-}ziz\text{-a-m} & g\text{ziz}^h\text{am} & \text{I will bray} \\
\text{c.} & k\text{-t}^h\text{os-n-ie-m} & k\text{at}^h\text{osniem} & \text{I will allow} \\
& k\text{-}\u039f\text{ap}^h\text{-ie-m} & k\text{ap}^h\text{iem} & \text{I will measure} \\
& k\text{-}\chi\text{nd-a-m} & k\text{v}^h\text{andam} & \text{I will laugh} \\
& k\text{-}savor-ie-m & k\text{osaviori}^h\text{em} & \text{I will grow accustomed to} \\
\text{d.} & k\text{-}b^h\text{ier-ie-m} & g\text{b}^h\text{ieriem} & \text{I will carry} \\
& k\text{-}\dot{g}^h\text{-o-m} & g\text{g}^h\text{om} & \text{I will come} \\
& k\text{-}d^h\text{n-ie-m} & g\text{d}^h\text{aniem} & \text{I will put} \\
& k\text{-}d^h\text{ziev-ie-m} & g\text{d}^h\text{zieviem} & \text{I will form} \\
\end{array}
\]

\(^1\) \(r\) represents a rhotic tap; \(\dot{r}\) is a rhotic trill.
What we are dealing with here is clearly a case of assimilation: the future prefix k- assimilates in voicing and aspiration to a following consonant. The fact that the features responsible for voicing and aspiration spread together constitutes strong evidence for the popular theory (e.g., Sagey 1986) that the feature-geometric representation of segments includes a Laryngeal node, which dominates the features [spread glottis] (responsible for aspiration) and [stiff vocal folds] (responsible for voicing), as schematized in (3).

(3) Laryngeal

[spread glottis] [stiff vocal folds]

With this structure in hand, we can interpret the alternations of the future prefix in (2) as the result of a rule that spreads the Laryngeal node to the k- from a consonant to its immediate right, as shown in (4) (intermediate nodes omitted).

(4) Laryngeal spreading

\[
\begin{array}{c}
 k \ # \ [+\text{cons}] \\
 \text{Laryngeal}
\end{array}
\]

This rule precedes a rule of epenthesis that inserts a schwa after unsyllabified consonants.

Crucially, the fact that voiceless fricatives cause the prefix to surface as aspirated k^h rather than unaspirated k (2c) suggests that voiceless fricatives are [+ spread]. Voiced fricatives, on the other hand, do not trigger aspiration (2b), suggesting that they are [− spread].

1.2 New Julfa Voiceless Fricatives

The same assimilation of laryngeal features in consonant clusters that we observed in the case of the future prefix also occurs in morpheme-internal clusters. New Julfa possesses a rule that deletes unstressed high vowels, leading to alternations of the type in (5).

(5) Base form Genitive Gloss

\[
\begin{array}{lll}
 \text{kūft} & k^h\text{jútín} & \text{side} \\
 \text{fietkús} & fietk^h\text{sún} & \text{behind}
\end{array}
\]

Again, underlying k becomes [+ spread glottis] before voiceless fricatives (cf. Atfarjan 1940: §123). Though I have not found any synchronic alternations of this type with other voiceless stops, the same behavior can be seen in the historical treatment of original plain voiceless stop + voiceless fricative sequences, as in (6).

(6) Classical Armenian New Julfa Gloss

\[
\begin{array}{lll}
 \text{psak} & p^h\text{sák} & \text{crown} \\
 (\text{Turkish}) \text{ bajörty} & p^h\text{jörthik} & \text{headscarf} \\
 \text{gijer} & k^h\text{jér} & \text{evening}
\end{array}
\]

As in the case of the Laryngeal spreading in (4), the processes in (5) and (6) only make sense if
we assume that voiceless fricatives are [+spread], and this [+spread] specification spreads to the preceding consonant. Voiced fricatives again must be [−spread] in order to avoid triggering the rule.

Further evidence for the claim that voiceless fricatives are [+spread] comes from the treatment of Greek loanwords in Classical Armenian. Forms of the type in (7a) show that Greek psi (i.e., the phoneme sequence /ps/) is rendered in Classical Armenian as a sequence of aspirated \(p^h + s \); similarly, (7b) shows that Greek ksi (i.e., the phoneme sequence /ks/) is rendered as aspirated \(k^h + s \). These facts are particularly striking given that Classical Armenian allows -ps-clusters (e.g., psak ‘crown’) and generally renders Greek \(p \) and \(k \) as Armenian \(p \) and \(k \), not \(p^h \) and \(k^h \) (7c).

\[
\begin{array}{ccc}
(7) & \text{Greek} & \text{Classical Armenian} & \text{Gloss} \\
& \Psi\alpha\mu\mu\epsilon\tau\chi\omicron\varsigma (Psammetikh\,os) & P^h\text{sametikos} & \text{Psammetichus} \\
& \psi\alpha\lambda\mu\omicron\varsigma (\text{psalmos}) & p^h\text{salmos} & \text{psalm} \\
& \alpha\phi\nu\theta\omicron\nu (\text{apsinthion}) & a^h\text{snin} & \text{wormwood} \\
& \Xi\epsilon\rho\xi\eta\zeta (\text{Kserkse:s}) & K^h\text{serk}\,\text{se:s} & \text{Xerxes} \\
& \xi\epsilon\sigma\tau\zeta\zeta (\text{kseste:s}) & k^h\text{sest} & \text{sextary, jar} \\
& \delta\omicron\upsilon\xi (\text{douks}) (<L. dux) & d\,u^h\text{s} & \text{leader, prince} \\
& \kappa\upsilon\varpi\alpha\kappa\eta (\text{kuraike:}) & k\,(w)\text{rake:} & \text{Sunday} \\
& \pi\upsilon\alpha\nu\theta\nu\rho (\text{pant\,\,\,e:r}) & p\,\,\text{ant}\,\,\,e\,\,\,r & \text{panther} \\
\end{array}
\]

The data in (7) can be accounted for with exactly the same rule used to explain the data in (5) and (6). According to this rule, the [+spread] specification of the \(s \) spreads to an immediately preceding consonant, resulting in aspiration of the immediately preceding \(p \) and \(k \) in (7a,b).

The same rule accounts for the Armenian treatment of the Indo-European word for twenty, *(d)wi-\(k^h\)mt-. Given the normal Armenian–Indo-European sound correspondences, we should expect the Armenian reflex of this Indo-European protoform to be *gsan, but in fact the Armenian form is \(k^h\text{san} \). However, given the rule of Laryngeal spreading just postulated in (4), this seemingly unexpected historical outcome now makes sense: the Laryngeal node of the \(s \), which dominates the features [+spread] and [+stiff], spreads to the preceding \(g \) of the protoform *gsan, producing the attested form \(k^h\text{san} \).

The same behavior of stop + fricative sequences is attested in Sanskrit by the ancient Indian phoneticians. According to the Rg Pra:ti:ja:k\(^h\)ja 13.16 (Varma 1929:73), the Taittiri:ja Pra:ti:ja:k\(^h\)ja 14.12 (Whitney 1868), and several other contemporary Indian phoneticians, underlying stops become aspirated before fricatives (which in Sanskrit consists of the set \(\{s \, \text{f} \, \text{s} \} \)), as in the examples in (8).\(^3\)

\(^2\) Rule (4) must not have been active at the time when psak ‘crown’ was borrowed into Armenian from Middle Iranian.

\(^3\) The Ait\,ar\,v\,a\,ved\,a Pra:ti:ja:k\(^h\)ja 2.6 (Whitney 1862) restricts the target of the aspiration rule to word-final stops. Interestingly, the Taittiri:ja Pra:ti:ja:k\(^h\)ja 14.13 mentions that according to the grammarian Va:q\,a:b\,h\,i:ka:ra, the aspiration rule does not apply when the fricative is homorganic with the stop.
REMARKS AND REPLIES

(8) Underlying form	Surface form	Gloss
bʰišak s:i:s-ena | bʰišakʰs:i:senə | healing lead-instrumental
ap-su | apʰsu | water-locative.plural

The process of aspiration observed by the phoneticians can be formalized as a rule that spreads the Laryngeal node of fricatives to a preceding stop, as in (9).4

(9) [−son] | [−son]
[−cont] | [+cont]

Laryngeal

The theory presented here predicts that voiced fricatives would spread their [−spread] specification to a preceding stop; in other words, they would not trigger aspiration. Since Sanskrit does not possess voiced fricatives, however, this prediction cannot be tested. We can conclude, though, that voiceless fricatives must be [+spread] in order to trigger the aspiration rule. The phonological evidence adduced here accords with the phonetic observations of the ancient Indian phoneticians, who state that the Sanskrit fricatives and voiceless aspirates form a class of aspirates, to the exclusion of plain voiceless consonants (e.g., Taittiri:ja Pra:ti:fa:kʰja 2.11; Whitney 1868:55).

1.3 Fricative Assimilation

The final piece of evidence concerning the behavior of laryngeal features in consonant clusters again comes from the Armenian dialect of New Julfa. In this dialect, original plain voiced stops regularly become voiced aspirates (10a), except after nasals (10b).

(10) Classical Armenian	New Julfa	Gloss
a. berem | bʰieriem | I carry
gini | gʰini | wine
dew | dʰev | demon
dzme rin | dʰzmeɾ | winter
dʒur | dʰʒur | water
b. bambak | bʰambak | cotton
gangat | gʰangat | complaint
andam | andam | limb
andżrew | andżrev | rain
kamurdʒ | karmundʒ | bridge

4 The Sanskrit facts do not actually provide any evidence that it is the Laryngeal node rather than just the feature [spread glottis] that is spreading. I assume the stronger hypothesis, though, since there is also no evidence that laryngeal features other than aspiration are not involved in this process.
When a voiced fricative immediately precedes one of these voiced aspirates, it becomes voiceless, as illustrated in (11).

<table>
<thead>
<tr>
<th>(11) Classical Armenian</th>
<th>New Julfa</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>anzgam</td>
<td>anɔsɡʰam</td>
<td>wicked</td>
</tr>
<tr>
<td>zgɔjʃ</td>
<td>ɔsɡʰuʃ</td>
<td>safe</td>
</tr>
<tr>
<td>zgal</td>
<td>ɔsɡʰal</td>
<td>feel</td>
</tr>
<tr>
<td>չելդել</td>
<td>չենչաղել</td>
<td>strangle</td>
</tr>
<tr>
<td>albiwr</td>
<td>aչբʰուɾ</td>
<td>fountain</td>
</tr>
<tr>
<td>zbalum</td>
<td>աչբʰարում</td>
<td>business</td>
</tr>
<tr>
<td>զուկցար</td>
<td>Զենչաղեր</td>
<td>repent</td>
</tr>
<tr>
<td>օչուբում</td>
<td>Օչուբում</td>
<td>greeting</td>
</tr>
</tbody>
</table>

Voiced aspirates are treated in two different ways in the literature. One camp, composed primarily of phoneticians, represents voiced aspirates by means of [murmur], a feature distinct from the conventional feature [voice] (Ladefoged 1993:144). In this model, the devoicing of fricatives in (11) cannot be interpreted as a rule spreading [murmur], because the voiceless fricatives produced by the rule are not murmured. Nor can it be interpreted as a rule of dissimilation, because in this model the feature [voice], which changes in the fricative, bears no phonological relationship to the feature [murmur], which triggers the change. In sum, the murmur model fails to account for the facts in (11).

The other camp, represented by the work of Halle and Stevens (1971), views voiced aspirates as [−stiff, +spread] segments. In this view, the phonetic murmur characteristic of voiced aspirates is a by-product of the competition between the phonological specifications [−stiff] and [+spread]. Halle and Stevens’s representation of voiced aspirates makes possible a more plausible analysis of the process in (11). Let us suppose that there is a rule that spreads the feature specification [+spread] from right to left in clusters, as in (12).

(12) [+cons] [+] [−stiff, +spread]

When a fricative precedes a voiced aspirate, it should become [+spread] by rule (12). Since voiceless fricatives in the proposed model are already [+spread], rule (12) will have no visible effect in this case. With voiced fricatives, however, rule (12) should produce the configuration [−stiff, +spread], that is, a voiced aspirated fricative. This type of fricative does not appear to be allowed in natural languages, presumably because the amount of airflow required to cue the presence of the feature [+spread], and to indicate that the segment is a fricative, is too great for the vocal folds to be able to maintain a [+stiff] configuration. I propose that the disallowed

5 Additional arguments against the feature [murmur] are given in Halle 1973.
configuration *[− stiff, + spread] is repaired so as to yield a *[+ stiff, + spread] segment, in other words, a voiceless fricative.\(^6\) This procedure is directly analogous to what we find in Icelandic, where stops spread their specification for the feature [spread glottis] to a preceding sonorant. When the sonorant becomes [+ spread] as a result of this rule, it devoices (Thráinsson 1978). The devoicing of English liquids following voiceless stops in words such as *pray* [p\(^h\)rej] can be explained in a similar manner (see Iverson and Salmons 1995).

As with the other cases presented in this section, the behavior of New Julfa fricative devoicing only makes sense if we assume that voiceless fricatives are [+ spread] and voiced fricatives are [− spread]. If all fricatives were [− spread], we would have to say that voiceless fricatives delinked the [+ spread] specification spread by rule (12); voiced fricatives, on the other hand, would have to delink both [+ spread] and [− stiff]. This analysis would miss the generalization that fricatives behave as a natural class, since voiced and voiceless fricatives would trigger different repair strategies. If on the other hand all fricatives were [+ spread], we would expect that rule (12) would have no effect on voiced fricatives, which is incorrect.

2 Delinking

Further evidence for the proposed representation of fricatives comes from the treatment of fricative + stop sequences in the Middle Indic language Pali. In this language, original Indic fricative + stop sequences (here represented by Sanskrit forms) surface as voiceless aspirates in initial position (13a) and postaspirated geminates in medial position (13b).\(^7\)

<table>
<thead>
<tr>
<th>Sanskrit</th>
<th>Pali</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Initial</td>
<td>skand(^h)á-</td>
<td>k(^h)and(^h)a-</td>
</tr>
<tr>
<td></td>
<td>stána-</td>
<td>t(^h)ana-</td>
</tr>
<tr>
<td></td>
<td>spar(á)a-</td>
<td>p(^h)assa-</td>
</tr>
<tr>
<td>b. Medial</td>
<td>hásta-</td>
<td>hatt(^h)a-</td>
</tr>
<tr>
<td></td>
<td>yašt(í)-</td>
<td>yat(^h)i-</td>
</tr>
</tbody>
</table>

The changes represented in (13) result from a general simplification of syllable structure that occurred between Old Indic (Sanskrit) and Middle Indic (Pali, Prakrit, etc.). Whereas Sanskrit allowed complex onsets (14a) and place features in codas (14b), Middle Indic did not (14c,d). Violations of the new syllabic constraints were repaired by deleting the offending segments. In onset position, this delinking resulted in the total disappearance of the segment (14c). In coda position, however, the timing unit vacated by the delinked segment associates to the following onset segment, yielding a geminate (14d).

\(^6\) The framework of constraints and repairs employed here is based on Calabrese 1995, to which I return in section 4.

\(^7\) Iverson and Salmons (1995) suggest that there is a mismatch between the underlying and surface representations in postaspirated clusters of this type: whereas in the acoustic output only the final member of the cluster is aspirated, in the underlying phonological structure all members of the cluster are linked to a single [spread glottis] specification. I will not discuss this idea further here, as it is not directly relevant to the theory that I am proposing.
What is relevant for our purposes is the fact that the laryngeal features of the delinked segments survive. In *stána-* ‘breast’ (13a), for example, the initial s delinks (15a), but the floating [+spread] specification of the s then attaches to the following segment (15b), producing a voiceless aspirate (15c).

A similar process occurs in the synchronic phonology of the Seville dialect of Spanish (Javier Martin-Gonzales, personal communication). As in many dialects of Spanish, s debuccalizes in coda position. Unlike in other dialects, however, the debuccalized s does not simply surface as h when it precedes a stop; rather, it also aspirates the following stop, as in (16).

The Pali and Spanish cases can only be accounted for by assuming that voiceless fricatives are [+spread]. If the Spanish s were [−spread], for example, we would be unable to account for the [+spread] specification that appears on the underlying p in (16).
4 Corroborative Evidence

The laryngeal specifications for fricatives proposed in this article have the additional advantage of allowing us to make sense of important components of two well-known but heretofore problematic phonological phenomena, postnasal voicing and tonogenesis. In this section I first consider how to treat postnasal voicing in languages such as Armenian and Greek, and then turn to tonogenesis in Thai.

4.1 Postnasal Voicing

The phenomenon of postnasal voicing is extremely common crosslinguistically and has attracted a great deal of attention from phonologists in recent years (see Pater, forthcoming, for a review of the relevant literature). However, existing accounts have not provided a satisfactory explanation for the failure of fricatives and aspirates to undergo postnasal voicing. In this section I show how the theory of laryngeal specifications presented in this article can be used to account in a unified way not only for the behavior of fricatives, but also for the behavior of aspirates.

A typical case of postnasal voicing occurs in the historical development of Modern Greek, where stops and affricates (17a) but not fricatives (17b) are voiced after nasal consonants.

(17)
Classical Greek	Modern Greek	Gloss
a. olumpos | olimbos | Olympus
kentron | kendro | center
ankura | angira | anchor
b. antʰro:pos | anθro:pos | man
melankʰolia | melanχolia | melancholy

Postnasal voicing is still active in the synchronic phonology of Modern Greek, as shown by the alternations in (18) (data from Pring 1962:19).

(18)
Underlying form	Surface form	Gloss
a. Stops | | |
ston kipo | stongipo | in the garden
δen pirazi | δembirazi | it doesn’t matter
en taki | endaksi | all right
b. Affricates | | |
ton psιXon | tombziXon | (all) souls’ (day)
stin tsanta tis | stindzandatis | in her bag
san ksilo | sangzilo | like wood

Sagey (1986) interprets postnasal voicing processes of this type as the spreading of [− stiff] from a nasal consonant to a following consonant (19a). She and other phonologists (cf. Padgett 1991) who have dealt with postnasal voicing assume that it creates a linked structure (in effect, a prenasalized stop; (19b)). This linked structure is not allowed to contain the feature combination

Note that the outcomes are not *amvors, *andrɔpos, *melanychɔlia, though Modern Greek has /γ/, /δ/, and /ν/ phonemes.
*{+nasal, +continuant}, since it is difficult to produce continuancy when the velum is lowered (19c). Consequently, postnasal voicing is blocked from applying to [+continuant] consonants.

(19) Postnasal voicing in the spirit of Sagey 1986 and Padgett 1991 (relevant features only)

a. Spreading

```
[+cons]  [+cons]

[+nasal]  [-stiff]
```

b. Result: linked structure

```
[+cons]  [+cons]

[+nasal]  [-stiff]
```

c. Illicit structure: *{+nasal, +continuant}

```
[+cons]  [+cons]

[+nasal]  [-stiff]  [+cont]
```

Sagey’s analysis, as well as the analyses of postnasal voicing comprehensively summarized by Pater (forthcoming), ignore the crucial cases of postnasal voicing, however, which occur in languages with richer systems of laryngeal contrasts. In these languages, such as New Julfa, postnasal voicing is blocked not only with fricatives (20b), but also with aspirated consonants (20c).

(20) Classical Armenian	New Julfa	Gloss
a. əntsaj | əndza | gift
 ankanel | ənganiel | fall
 tʃantʃ | tʃandʒ | fly
 ajntel | əndieʃ | there
b. — | insaf | justice
 — | sunsunakviel | starve
 — | tʰanʃiel | give false hopes
 — | semsuri | type of melon
c. tʰantʃel | tʰantʃfin tal | mutter
 fampʰur | fampʰur | spit
 jawnkʰ | fiunkʰ | eyebrow

The rule of postnasal voicing belongs to the synchronic phonological system of New Julfa, as shown by the fact that it applies in clusters created by a synchronic rule of vowel syncope (21).

(21) Nominative	Genitive	Gloss
konik | kʊnga | wife
ɡʰortʰənuk | ɡʰortʰənga | frog
Sagey’s analysis cannot account for the failure of voiceless aspirates to undergo postnasal voicing. Since voiceless aspirates are [−continuant], we expect them to become voiced, but they do not. The theory developed in this article suggests another solution, however. In this model, but not in Sagey’s, the fricatives in (17), (18), and (20) share with voiceless aspirates the feature specification [+spread]. Furthermore, the feature combination [+nasal, +spread] is highly marked, as it is difficult to sustain oral aspiration noise—the primary acoustic correlate of [+spread]—when the velum is lowered. In the terms of Calabrese’s theory of markedness, the articulatory complexity and rarity in phonological systems of this particular feature configuration is captured by a marking statement of the form in (22), which states that aspirated nasal segments are phonologically marked.

(22) *[+ nasal, +spread]

Given the assumptions that voiceless fricatives are [+spread] and that Universal Grammar contains the marking statement in (22), we can now account for both the Greek and the New Julfa facts, with only minimal modification to Sagey’s original analysis. In the proposed analysis, postnasal voicing spreads the feature [−stiff] from a nasal consonant to a following obstruent, creating a linked structure (cf. (19a)). Since linked structures are treated by marking statements as single segments, postnasal voicing makes visible to these marking statements the [spread] specification of the segment to which the [−stiff] feature of the nasal has spread. If this segment happens to be [+spread], the linked structure contains the disallowed configuration *[+ nasal, +spread] (cf. (19c)). This disallowed configuration is subsequently repaired via delinking of the [−stiff] feature from the target segment.

4.2 Thai Consonant Classes

The laryngeal specifications proposed in this article also allow us to make sense of one aspect of tonogenesis in the history of Thai. It is well known that the tones that developed on Thai vowels somewhere between the fifteenth and seventeenth centuries (Hudak 1987:763) were determined by the quality of neighboring consonants. The Thai consonants fell into three groups with respect to the tones they engendered.9 These groups are schematized in (23).

(23) Thai consonant classes
 I voiceless aspirates, voiceless fricatives, voiceless sonorants
 II plain voiceless stops
 III voiced sounds (vowels, voiced sonorants, voiced aspirates)

Note that voiceless fricatives pattern with voiceless aspirates (group I), rather than unaspirated stops; note also that voiced fricatives pattern with voiced stops (group III), and not aspirates. We can rewrite the groupings in (23) in terms of the natural classes in (24).

9 I do not present the tonal outcomes themselves, because they are not directly relevant to the discussion.
(24) *Thai consonant classes, revised*

I \[+ \text{spread glottis}, + \text{stiff vocal folds} \]
II \[- \text{spread glottis}, + \text{stiff vocal folds} \]
III \[- \text{stiff vocal folds} \]

Note that only the theory of laryngeal specifications proposed in this article allows us to group the obstruents correctly with respect to their phonological effects in the evolution of Thai tones. Given this theory, we expect the voiceless fricatives to fall into group I, since they are \[+ \text{spread} \].\(^{10}\)

Theories that maintain that voiceless fricatives are \[- \text{spread} \] cannot account for the distribution in (23). By the same token, theories that maintain that all fricatives are \[+ \text{spread} \] cannot account for the fact that voiced fricatives do not pattern with group I.

5 Conclusions

The Armenian, Indic, Spanish, Greek, and Thai facts discussed in this article provide strong phonological evidence that voiceless fricatives are specified as \[+ \text{spread glottis} \] and voiced fricatives are specified as \[- \text{spread glottis} \]. These pieces of phonological evidence dovetail well with the phonetic facts mentioned earlier, namely, that voiceless fricatives are produced with a spread glottis (Kingston 1990, Stevens 1991) and voiced fricatives are not (Catford 1977).

It should be noted that these specifications represent the unmarked state for fricative systems, rather than an absolute and invariable set of specifications. It is perfectly possible for languages to contrast \[\text{spread} \] values in voiceless fricatives allophonically (as in English) or phonemically (as in Burmese); it also appears that in some languages, such as Chinese, both the voiced and voiceless fricative series are \[- \text{spread} \] (Kevin Herwig, personal communication). Systems of the Chinese type are simply more marked than systems of the Armenian type, and hence they appear in fewer of the world’s languages. In the terms of Calabrese’s (1995) theory of markedness, Universal Grammar provides a marking statement of the form in (25),

(25) \[*[+ \text{stiff}, - \text{spread}]/[___, + \text{cont}]\]

which states that \[- \text{spread} \] voiceless fricatives are phonologically more complex than \[+ \text{spread} \] voiceless fricatives (the marking statement also reflects the fact that voiceless vowels are generally \[+ \text{spread} \], but I will not consider this fact here). Voiced fricatives that are \[+ \text{spread} \] are ruled out by a marking statement of the form in (26) (cf. Calabrese 1988:274).

(26) \[*[- \text{stiff}, + \text{spread}]/[___, + \text{cont}]\]

The laryngeal specifications of the fricatives in the languages considered in this article cannot be derived from the structure of the stop inventory. In a two-series laryngeal system contrasting plain voiced and voiceless aspirated obstruents, such as we find in Standard Western Armenian, one could say that the voiceless fricatives are predictably \[+ \text{spread} \] because all voiceless ob-

\(^{10}\) The fact that the voiceless sonorants also belong to group I supports the idea that they are \[+ \text{spread glottis} \] as well (cf. Ohala and Ohala 1993, Silverman 1995, Asano 1997).
obstruents are [+spread]. This reasoning cannot work for languages like New Julfa or Sanskrit, though, where voiceless obstruents are not predictably [+spread], nor are voiced obstruents predictably [−spread].

It should be noted that the theory presented here is primarily a theory of phonological rather than phonetic representations. Though I believe that the phonological representations proposed here are well grounded phonetically, some phonetic questions remain. For example, both Ken Stevens and Louis Goldstein have independently pointed out to me that, like voiceless fricatives, voiced fricatives also require some spreading of the glottis in order to produce sufficient airflow to yield frication noise; however, the degree of spreading is not as great as it is for voiceless fricatives. I do not consider this to be a problem, however, given that voiceless fricatives clearly pattern differently from voiced fricatives with respect to phonological processes.

The important point to bear in mind here is that a phonological specification [−X], where X is any feature, does not entail that the component of the vocal tract activated by [X] is completely inert at the phonetic level. The English phoneme [j], for example, is specified in the phonology as [−round], yet it is often implemented with some rounding of the lips. Similarly, vowels that are phonologically [−nasal] are often implemented with some airflow through the nasal passage by speakers of American English. The fact that in each of these cases a particular articulator is phonetically active to a certain degree does not entail that this activity is encoded in the phonological representation; for example, we do not want to say that English [j] is [+round] in the phonology, nor do we want to say that American vowels are phonologically [+nasal].

Rather, we should acknowledge that phonological features bisect a continuum of phonetic activity. In this view, [+nasal] for example represents lowering of the velum beyond a certain critical zone; [−nasal] represents any lesser degree of velar lowering. Similarly, [±spread glottis] should be defined in terms of a line drawn somewhere in the range of possible degrees of spreading of the vocal folds (27a), rather than in the all-or-nothing terms of spreading versus no spreading (27b).

(27) a. Definition of [±spread glottis] proposed here

\[
\begin{align*}
\text{maximum spreading} & \quad \rightarrow \quad [+\text{spread glottis}] \\
\text{no spreading} & \quad \rightarrow \quad [−\text{spread glottis}]
\end{align*}
\]

b. All-or-nothing definition of [±spread glottis]

\[
\begin{align*}
\text{maximum spreading} & \quad \rightarrow \quad [+\text{spread glottis}] \\
\text{no spreading} & \quad \rightarrow \quad [−\text{spread glottis}]
\end{align*}
\]
The assumption that voiceless fricatives are specified [+ spread glottis] makes it possible to provide a unitary account for a wide range of seemingly disparate phenomena. On the one hand, the phonological model proposed here reflects phonetic properties of fricatives that hitherto had been observed by phoneticians but ignored by phonologists. In addition, it accounts for the phonological behavior of laryngeal spreading, fricative assimilation, and postnasal voicing in Armenian, aspiration in Sanskrit, de Buccalization in Middle Indic and Spanish, and tonogenesis in Thai. Within theories of phonology that do not adopt the representation of fricatives proposed here, the individual phenomena in this set become difficult to explain, and the common phonological thread uniting them is missed.

References

Department of Linguistics
Harvard University
Cambridge, Massachusetts 02138
vaux@fas.harvard.edu