Public participation, experts and expert knowledge in water management in the Netherlands

Jacko A. van Asta and Lasse Gerritsb

aCorresponding author. Department of Public Administration, Erasmus University Rotterdam, Burgemeester Oudlaan 50, Rotterdam 3000 DR, The Netherlands. E-mail: vanast@fsw.eur.nl

bDepartment of Political Science, Otto-Friedrich University Bamberg, Feldkirchstraße 21, Bamberg 96052, Germany

Abstract

In our complex society, specific expertise is inevitable for decision-making in technical projects such as water management projects. For that reason, experts are also called the sixth power. Some of them work in administrative organizations and others are hired by stakeholders that participate in decision-making. For a large part they are employed in the private sector as consultants or are employees of interest groups. As such, they represent the most technocratic dimension of such projects. It often appears that their opinions about technical and financial issues play a dominant role in the outcome of water-related projects. The objective of this paper is to explore the influence of experts, in relation to the stakeholders (including governments and lay people), in participatory decision-making processes regarding water management. An important question here is whether experts and their knowledge advance or determine decision-making. We present two concrete experiments: one where experts were given a leading role, and one where experts were given a position in the backseat. The experiments demonstrate that stronger expert participation negates public participation and the other way around.

Keywords: Expert knowledge; Lay knowledge; Participatory decision making; Stakeholder involvement

1. Introduction

Like in many other places in the world, participation in public decision-making over water management projects has become increasingly common throughout Western Europe. Some projects feature arenas where different people from different types of organizations and backgrounds meet to discuss matters. The modes of such arenas differ greatly but they share the fact that they increase the transparency of the decision-making process. In other words, what used to be hidden in the back-office is now made more visible. One of the dimensions that becomes visible in such cases is the role of experts and the use of expert knowledge during the phases of decision-making. Water management includes technical considerations that are necessary to support such decision-making, e.g. to calculate the capacity of

doi: 10.2166/wp.2016.253

© IWA Publishing 2017
a watercourse or the structural strength of a dam. The more complicated the project, the more such knowledge is necessary to understand the possible consequences of decisions. The objective of this paper is to explore the influence of experts in relation to the influence of participants in participatory decision-making processes regarding issues of water management. While one could see water management as a purely technocratic matter, it has also become more open to a more general audience through, for example, participatory decision-making, as per regulations such as the Water Framework Directive. Here, smart digital decision support systems can play an important role, however this paper does not focus on technical tools but on the role the participating people play. The question is to what extent the need for expert knowledge and public involvement are at odds with each other. This paper examines the influence of experts and their knowledge on decision-making in two integrated and participatory water projects. We will first discuss the issues of participation in decision-making (section 2) and the role of expert knowledge (section 3). We will then move on to discuss the case studies (section 4) and our observations about the extent to which experts determine decision-making outcomes.

2. Participation in decision-making

The involvement of stakeholders in decision-making makes up an essential part of the integrated policy approach according to the Dublin Conference (United Nations (UN), 1992). A number of declarations and conventions have been acknowledged, of which the Rio Declaration (United Nations Conference on Environment and Development (UNCED), 1992), the Aarhus Convention (United Nations–Economic Commission for Europe (UN-ECE), 1998), and for water related subjects, the many declarations of the World Water Forum and the European Union (EU) Water Framework Directive (EU, 2000) might be the most important. Widely recognized is that the involvement of stakeholders other than traditional policy-makers and (large) companies in resource and environmental management is important for various reasons (Margerum, 1999; Webler et al., 2001; EU, 2000; Mitchell, 2002; Delli Priscoli, 2004) of which sustainability is one. The involvement of such stakeholders in decision-making is expected to solve implementation problems of policy decisions, to increase the social acceptance of policy measures, to meet democratic ideals and to enhance transparency of, and trust in, policy and regulations (Edelenbos, 2000; Rowe & Frewer, 2000; Heyd & Neef, 2006).

In other words, participation of non-governmental actors is considered to have some important advantages (Van Ast & Boot, 2003). The first is that the quality of decision-making is potentially higher because different views and specific knowledge of people involved can be taken into consideration. The second considers the interactive exchange of information that can lead to a better understanding of the argumentation of a specific situation and hence can contribute to public acceptance and support. Other advantages that can sometimes be realized are the increase in available resources such as people and budget.

As far as the potential disadvantages are concerned, different perspectives are important. From the perspective of the government, an important disadvantage could be that involved public and stakeholders have different goals, which could undermine governmental policy (Van Ast & Boot, 2003). From the perspective of the public, the most important disadvantage is that (high) expectations are often not fulfilled. After searching a long time for an ideal solution, it is difficult to accept that, for example, prohibitive costs block most opportunities.

Stakeholder involvement and public participation are interpreted in various ways. Definitions differ in the level of influence the stakeholders have on the eventual decision, and in the type of stakeholders
involved. On top of that, the definition of a ‘stakeholder’ is interpreted in various ways. Usually, only organized interests are involved in participatory approaches. Hence, both individuals and (organized) groups can act as stakeholders, stemming from either the scientific, policy or society domain. Their stakes may not always be clear, they may contradict each other and may change over time. Also the number of stakeholders may change during the decision-making process (Van de Kerkhof, 2004).

We define a stakeholder as a private individual, a group of people or an organization, that has a certain interest (stake) in a given issue but is not part of the traditional policy process and decision-making. Besides, we acknowledge that the general public could exert influence over a public participation process. Public participation is defined as the involvement of non-governmental individuals in a collective decision-making process that officially is the sole responsibility of the government. Stakeholder participation, then, is the involvement of individuals or organizations that have a certain interest (stake) in an issue or decision. Usually the stakeholders are invited by the decision-maker, which constitutes a corporatist dimension. Contrary to this closed model, public participation is open for all public; a certain stake is not required.

Literature on public participation focuses on dilemmas and paradoxes, and concentrates on principles for a ‘good’ participation process (Cleaver, 1999; Margerum, 1999; Noble, 2000; Webl er et al., 2001; Tankha & Fuller, 2010), development of new models and approaches (Leroy & Tatenhoven, 2000; Eriksson, 2012) or typology of public participation (Renn et al., 1993; Pellizzoni, 2001; Van Asselt & Rijkens-Klomp, 2002; Bulkeley & Mol, 2003; Morrison, 2003; Van Ast & Boot, 2003; Roth et al., 2006). Other researchers focus on the effectiveness of forms or methods of public participation, from more or less formal ways such as consultation rounds towards open plan processes including one-to-one discussions. A range of tools can be applied in public and stakeholder participation processes, varying from information sessions, to focus groups in workshops, ‘kitchen table’ conversations and digital platforms as decision support systems (Chess & Purcell, 1999; Hiedanpää, 2005; Kallis et al., 2006; Van Schie et al., 2007; Institute for Water Resources (IWR), 2016). The water sector has a long-standing tradition with participation, such as ‘shared vision planning’ in the USA, developed by the IWR (2016) and Palmer et al. (2013), and in the EU through integrated water management based on the water framework directive (EU, 2000; Mostert, 2003; EU, 2016).

Much has been written about the relation between democratic principles and the involvement of non-state actors in the decision-making process (Fischer, 2003; Mayer et al., 2005; Wagenaar, 2007). One can doubt if such processes, parallel to general decision-making by people’s representatives, are undermining democracy. Since governments in Western Europe and the United States are based on representative democracy, a second system of decision-making by invited citizens leads to the criticism of bypassing the representative level. Much less criticism has been raised against the influence within these processes of expert knowledge, either from the public or the private sector.

3. Expert knowledge

Experts are the individuals who possess knowledge of a usually scarce kind, which is necessary input for the decision-making process. Such experts have received professional education or training aimed at their specific expertise and work in consulting firms, interest groups, specialized institutions, advising committees or in technical departments of public organizations. Theoretically, they can play a neutral role in providing the requested information. In practice, however, experts search, select and process
information before forwarding it to the decision-making process. They may decide to look at certain aspects whilst ignoring others, or find arguments in favor of certain options. As such, experts play a crucial role in the decision-making process, even in a time where some citizens, by using easily accessible data from the Internet, can easily develop expert knowledge and become kind of experts themselves. Since expert knowledge is inevitable in water management, it is worth considering its role in the face of citizen’s participation in decision-making processes.

Such public participation ranges from no involvement at all, to full co-deciding, or even taking and applying the initiative. Each level on this ‘ladder of participation’ has a corresponding governance style (Arnstein, 1969; Pröpper & Steenbeek, 1999; Edelenbos, 2000), which indicates that the goal of stakeholder involvement needs to match a particular governance style to be effective. For example, a closed authoritarian style is not suitable if the goal is to have stakeholders co-produce certain solutions. Failures of stakeholder involvement, e.g. good intentions but unsupported outcomes, can often be blamed on this mismatch (Gerrits & Edelenbos, 2004). Ideally, each level on the ladder also features a specific involvement of experts and the type of information requested. Generally speaking, there is a close connection between the governance style, the role and attitude of policy-makers and the role and attitude of experts. Table 1 has been adapted from Gerrits & Edelenbos (2004).

Experts, as members of a particular public organization (e.g. a municipality or a water board) or a private organization (e.g. an engineer or a consultant) hold a privileged position within these participatory processes. They possess the knowledge that is needed to assess the possible consequences of decisions and are able to answer questions about the feasibility of certain ideas. They provide the knowledge base to which policy-makers can refer and their role is intimately connected to the role of the policy-makers and the way the stakeholder involvement is approached. The table also points out that the importance of the role of experts in the participatory process decreases with an increase in the

<table>
<thead>
<tr>
<th>Role of policy-maker</th>
<th>Role of expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy-makers determine policy, policy process is closed, no information is issued</td>
<td>Delivers information to policy-makers on demand, no information to stakeholders</td>
</tr>
<tr>
<td>Policy-makers determine policy, information is issued to stakeholders</td>
<td>Delivers information to stakeholders on demand of policy-makers</td>
</tr>
<tr>
<td>Policy-makers determine policy, and open the process to input by stakeholders, but are not obliged to adopt their recommendations</td>
<td>Delivers information on demand of all parties; experts provide another information flow to the process, next to information from stakeholders</td>
</tr>
<tr>
<td>Policy process is open to input by stakeholders; they take input into account, but have the right to deviate from it in their decisions</td>
<td>Delivers information on demand of all parties and investigates suggestions from participants on demand of the policy-makers</td>
</tr>
<tr>
<td>Policy-makers may take the input of stakeholders into account and honor it if it fits into the set preconditions</td>
<td>Experts treat policy-makers and stakeholders as equal clients, advice and knowledge provision to both parties</td>
</tr>
<tr>
<td>Policy-makers interact with stakeholders on the basis of equivalence, they take the input of the stakeholders very seriously</td>
<td>Experts treat stakeholders as equal knowledge providers, must keep an open mind to suggestions and ideas from stakeholders</td>
</tr>
<tr>
<td>Policy-makers offer support (resources such as money and time) and leave the production of solutions and decisions to the participants</td>
<td>Experts support stakeholders with knowledge; experts treat stakeholders as their clients, need no approval of policy-makers</td>
</tr>
</tbody>
</table>
influence by the stakeholders. From this follows that stakeholder involvement has the potential to erode the position of experts, and vice versa, which presumably could cause experts to be careful about the extent to which stakeholders become influential. In other words, increasing stakeholder participation could mean that experts start losing their position and their sole raison d’être. Naturally, this pattern can change during the different phases of the decision-making process.

Table 1 and much literature on stakeholder involvement and the role of experts in participatory processes, bear a normative stance about the desirability of stakeholder involvement. The motive most often used is democratic legitimacy and anchorage, i.e. stakeholder involvement as an essential element in deliberative democracy. Supporters of that stance re-conceptualize the role of experts and reposition the experts in the arena built around stakeholder involvement. While a normative case can be made for this, it is not self-evident that experts will adapt to new positions and new roles. Some literature (e.g. Susskind & Cruikshank, 1987) suggests that such a change is inevitable in the changes of (Western) systems towards network governance with associated democratic principles. It is interesting to consider how experts deal with the shifts in governance patterns in terms of their roles and behavior. In this paper we consider two cases where experts were involved and were given a predefined role. They were given a leading role in the first case, as initiators of steps in the decision-making process, but a facilitating role in the second case where authority was distributed to the stakeholders.

In the realm of water management, the knowledge delivered by experts can be divided into four groups. The first concerns (technical) feasibility studies, in which experts try to gage whether a certain proposal is feasible given certain circumstances. The second concerns (societal) cost-benefit analysis or (S)CBA. Such analyses are meant to give an impression about the societal costs and returns of certain proposals. Although criticized for only measuring monetary costs and benefits, they are widely employed to create a degree of certainty in an uncertain future. The third and fourth groups of expert knowledge concern prospective or designing studies such as future scenarios for a given area. The latter concern the concrete visualizations of the design or scenario studies, e.g. in the shape of renders or videos. All four groups of knowledge are of major importance to political decision-making because they deliver some certainty (or at least an impression of certainty) in what can be considered uncertain circumstances. Most projects involve considerable budgets and it goes without saying that politicians want to know whether the investment has a valuable return and whether the societal effects are desirable. And it can be expected that also the general public or stakeholders are interested in cost effectiveness. However, tensions between different value orientations rise when experts and stakeholders are cramped in one project.

4. Cases: ‘Freude am Fluss’ and ‘Rondom Arnemuiden’

4.1. Introduction

In the following, we present two case studies in which we participated as action researchers. The role of experts was carefully designed in order to gage the reciprocal relationship between experts and stakeholders or public. The first case study concerns ‘Freude am Fluss’ (FaF; loosely translated as ‘pleasure on the river’). The objective of FaF was to identify possibilities for ‘Room for the River’ projects along sections of the rivers Rhine (D, NL) and Loire (F). In particular, institutional arrangements that can facilitate river restoration projects were to be realized. In this context a specific method, the
Joint Planning Approach (JPA), was developed and applied to areas in France, Germany and the Netherlands. This method is developed for participative planning by public, stakeholders and governments in ‘Room for the River’ projects. Experts were given a prominent role in this case.

The second case study concerns ‘Rondom Arnemuiden’ (RA; around the town of Arnemuiden). The objective of RA was to revive a deteriorating village and adjacent area in the Zeeland Delta (NL) by means of building a water body extension from the Veerse Meer Lake towards the village. It was assumed that building this water body would enable the construction of new and luxurious houses along the water, which in turn would raise the value of the land and would mean new inhabitants who were expected to revive the dwindling local shops and village life. In addition, nature development was part of the agenda. The design of the decision-making process put the public with a stake in the role of the policy-maker. Experts were asked to serve the participating people rather than the government officials, and were asked to provide information after principal decisions (about the main issues) were made, rather than the other way around.

We present the two cases below. We first present FaF as this is where experts were given a prominent role, then switch to RA to see how experts respond to a situation where they are put in the back seat. The differences are discussed in section 5, Conclusion and discussion.

4.2. FAF

FaF (Swanenveugel, 2007), was a collaborative project in the Netherlands, Germany and France, co-financed by several public organizations and the EU (INTERREG). Partners included universities and local, regional and national authorities. The basic philosophy behind the project was to combine socio-economic and ecologic advantages of flood prevention projects related to enlargement of the riverbed. To investigate possibilities for Room for the River, and to focus on the institutional arrangements that can advance river restoration projects, a specific method, the JPA, was developed and applied to areas in France, Germany and the Netherlands.

In general, the JPA provides an action-oriented framework on how authorities, local communities and private actors can organize the planning process from the earliest stage of problem identification, up to the agreement on measures about the implementation. The term ‘joint’ implies a high degree of interaction during the planning process of actors. Experts from different societal actors play a major role, since they are part of the process from the very beginning. The rationale behind it is to confront the ideas of citizens or interest groups directly with expert knowledge, in order to phase out unrealistic ideas. It was assumed that this would improve the quality of the planning options.

The JPA is composed of a number of public planning steps. The process starts with a ‘step zero’, in which the initiators internally design the envisaged JPA application of their local situation, followed by the public planning process, ordered in six steps. The process is summarized in Table 2.

The first step of mutual learning, brings experts together with stakeholders and/or public, in sessions where the project features are analyzed and the proverbial ‘dos and don’ts’ of the projects are exchanged. In the second step of ‘shared visioning’, citizens accompanied by experts evaluate the state of the art and explore possible development options. In two examples of shared visioning, in the southern section of the River Rhine and on the middle part of the River Loire, a group of international experts joined this step. Together they visited the site and valued the options for improvements in flood management with a focus on the creation of more space for the river. In both
cases the groups created a document which in the rest of the process became the starting point for further discussions.

The expert group entered the next step of identifying rules and institutions, by preparing an overview of the applicable rules and institutions. In describing the institutional and juridical context the limitations of the improvements in the project area were explored. The expert group also prepared the exploration of options. The resulting document describes an expert knowledge based overview of the optional design of possible improvements. The idea was to deliver input for the next step of ‘joint options exploration’, but it resulted in a situation where the initial expert position was difficult to alter during the process. It made the expert’s role dominant in the rest of the participation process, including in the ‘joint design and decision-making’ and in the step ‘towards implementation’, the final step of the procedure.

Within the FaF-case as presented here, various projects and measures were developed which all had their own complexity. In each project a certain design for participation of non-governmental actors was included and experts played an important role in those aspects. Especially when the experts interact directly with the stakeholders or the public, it appears that their extended knowledge base gives them a clear lead over others. As such, they exert a strong influence on the outcome. This can happen without intention, but it is also possible that they strategically direct the participating actors into a certain direction that expresses their values. For example, it was observed that the more expert knowledge was brought in, the less participants were able to articulate their views. Participants in the interactive policy-making process are generally not powerful enough to withstand the argumentation of the experts. Although many lay people are much better informed than was the case in the pre-internet era, experts who are educated in a specific field are still more confident about their knowledge and do exert influence on the basis of substantive authority. In meetings with autodidacts, who in many cases are unsure about their freshly obtained knowledge, they tend to dominate the discussions. Their reactions are two-fold: most of them follow the experts and in rare cases they leave the process because they feel they are not taken seriously.

It appeared unrealistic to avoid expert influence with the start of a project (Swanenvleugel, 2007). Even in the early stages of the birth of a project idea, the experts are asked by politicians about their views on the realization of certain projects. And also close to the implementation phase, it is inevitable to include financial experts in the process. In the FaF-projects, experts were intentionally brought in at every suitable step in the JPA. To give more room to stakeholders or citizens, it would have been necessary to let them interact without interference of experts. This lack of interference was the goal in the RA-experiment, the next case we will discuss. The experiment encompassed widening the gap between public and experts, in order to determine whether the quality of the participation process would become
higher, especially in terms of creativity in optional improvements, if experts were given a less prominent role. In the following section the outcomes of the experiment are discussed.

4.3. RA

RA was the title given to a redevelopment project north-east of the Arnemuiden village in the Zeeland province in the Netherlands (Van Schie et al., 2007). Arnemuiden used to be an important centre of trade and commerce in the 17th century but its role declined gradually. At the beginning of the 21st century, it had become a quiet and small village with a relatively homogeneous population. Shrinkage of the population had its effect on the level of services, the number of shops and membership of social groups such as the local football club. Bureaucratic reorganization meant that its administration was merged with the nearby city of Middelburg – a process that locals often considered a ‘hostile takeover’. Political decision-making moved to Middelburg, and only a local village council without much legal power remained. The council of Middelburg decided that Arnemuiden’s gradual decline should be stopped. They commissioned a renowned urban planner for this area, who presented a plan that included inundation of large parts of the polder, together with a large-scale development of residential areas. Both proposals were against the grain in this rural area that, in the eyes of the locals, had been conquered from the sea surrounding it. The result was fierce local resistance and the plan was abandoned. Although it was probably a good idea not to implement a plan that met so much resistance, its abandonment left open the question of how this area should be revived. Understanding that the support of locals and other stakeholders was inevitable, the municipality of Middelburg asked a consortium of scientists and consultants to develop an alternative plan that also would obtain popular support (Van Schie et al., 2007; Van Schie, 2010).

The consortium proposed a plan that was based on a public participation process and aimed at developing one or more plans for the future spatial development of the area. Although there was considerable freedom in developing these plans, the main driver was to be the construction of a water body resembling the old Arne River, from which Arnemuiden got its name. This idea appeared to be broadly supported. A central theme in this proposal was that the public was given the lead in the development of the plans. In other words, it was now up to the citizens to formulate a counter-proposal to the original plan from the municipality. This turn-around required professional support for the participating public, that was provided by the consortium. Expert knowledge was an issue here. Whatever the final shape of the plan, it would always have a multitude of technical issues that required a solution or input of specialized knowledge, such as water and traffic management, residential density and nature development. For the sake of the experiment, public and experts were kept separated during the procedure. The participating citizens were given the freedom to develop scenarios; experts were only asked for their views on particular issues such as minimum dimensions of the water body but not whether it would be a good idea to build such a water body. In other words, experts could give their judgment about that particular issue but not to judge the plan as a whole. This was supposed to keep citizens in the lead while still benefiting from expert knowledge.

After political approval and support of the process, the first steps guided the participating citizens from dreaming up future possibilities towards the development of a number of scenarios that were jointly narrowed down to two solid scenarios. Both scenarios centered on the reconstruction of the Arne River, featured extensive nature development, extension of recreational zones and development of a residential area to recover the initial costs of the plan. The main changes to the infrastructure
included the reopening of the dyke separating the new Arne River from the existing Veerse Meer Lake and additional roads to cope with the expected increase of traffic, including a bridge over the new Arne River.

Each participatory meeting was followed by an expert meeting during which the questions raised by the citizens were discussed, and answers were formulated. The so-called expert group was relatively large with members from the municipality, water board, the Ministry of Infrastructure, the Province of Zeeland, fishery commissions, agricultural interest groups, entrepreneurial organizations including the Chamber of Commerce and a number of smaller interest groups. Sessions were hosted by the municipality at their office and they were chaired and supported by the consortium. Questions from the citizens were sent prior to the meeting and experts prepared their answers. Questions that could not be readily answered were postponed while the experts did more research.

The expert sessions showed three types of responses to the questions. The first type involved doing research and answering the question with the best of knowledge available. For example, the members from the water board determined the options for establishing an open connection with the Veerse Meer Lake. The second type of response featured the argument that the question could not be answered as long as political decision-making had not taken place. For example, the municipality did not want to answer the question how many houses should be built in order to recover the costs, as long as the council and aldermen had not decided about houses to be built. The third type of response displayed the uncertainty about future developments and an inability to give a clear answer. For example, the municipal working group on mobility eventually came up with more than ten different solutions to the question of accessibility; each solution in turn requiring further changes to the infrastructure elsewhere in the region. Experts sometimes also returned new questions, e.g. about the attractiveness of a certain option. The experts also reviewed the two final plans that were the result of the participatory sessions. Rather than judging the plans as a whole, they decided to review the different components, e.g. water, infrastructure and recreation, separately. Their overall conclusion was balanced, stating that both plans had interesting ideas but also outlining many possible pitfalls and difficulties (Van Ast & Gerrits, 2007).

The plans and the expert report were presented to the mayor, the aldermen and the council. They accepted the plans as ‘interesting ideas’, and then there was silence and nothing happened with the plans. The two final plans were heavily influenced by the experts’ judgment about the feasibility of certain ideas. For example, the reconstruction of the Arne River received a negative response because the ground surface level was deemed too high. Also, the civil servant responsible for land development suddenly argued that there was no need to build new residential areas, despite earlier intentions. Many of the dreams were countered with legal arguments (regulation, planning procedures of others not directly involved) and economic objections (availability of budget). While the overall plans were deemed ‘interesting’ as far as the content was concerned, there were many arguments in the text that could be used to argue against them. Most experts were skeptical about the feasibility of the plans, but some of them were willing to cooperate (Van Ast & Gerrits, 2007).

The key-player was the municipality. Whereas other organizations had a relatively small group of experts working on the plan, the municipality had, over time, established about ten internal working groups to cope with the perceived complexity of the process. As such, the municipal experts had developed into a considerable force within the municipality and acted as an intermediary between participating citizens and politicians regardless of earlier design intentions. Their influence was not only seen in the final report but above all in the ways the case was handled within the municipality and in the communication to the politicians. Consequently, the political decision-making was more
influenced by the internal workings of the municipality than by the citizens’ plans (Van Schie, 2010), which adds to an explanation of the fact that the plans never took off. We therefore conclude in this case that the influence of the experts was considerable despite the efforts to diminish their influence.

5. Conclusion and discussion

Expert knowledge is woven in the structure of public decision-making, and hence in participatory processes. During the different phases of a decision-making process the role of experts differs considerably (Van Ast & Gerrits, 2007; Swanenvleugel, 2007; Van Schie, 2010). Clearly, expert influence cannot be avoided in such projects, but that can be at odds with participation by lay people. Both FaF and RA showed that experts were considerably more influential than public, even though their positions in the process were quite different, with the experts in FaF in a leading role, and in RA in a more passive role. A number of mechanisms appeared.

First of all, it appeared that the influence of experts or public/stakeholders is determined in the proverbial connecting vessels where a higher expert influence would come at the expense of public influence (see Figure 1 for a simplified depiction).

Besides, it also appears that experts are often connected to stakeholders. Because of the corporatist character of stakeholder participation, it appears that the interest groups also are regularly asked to give advice in a role as expert. Here we see stakeholders’ participation clearly distinct from public participation where the connection between citizens and experts is nearly absent.

Secondly, the position of experts during the project phases could shift from active to passive; from being the foundation of decisions towards delivering information on demand. However, ultimately the experts get the final say in such matters. Their (technical) knowledge is inevitably necessary when deciding about projects in water management. We observed that experts responded to this potential shift, from actively to passively using their knowledge, in a number of ways. A prominent response was the use of somatic markers, such as the not-invented-here response and a general attitude of ‘we don’t like what is being proposed’. Also, it appeared that tradition was important. This meant that the shift was countered with the argument of ‘this is not how we do it here’. Attached to this was a
normative response, i.e. ‘this is not how it should be done here’. We noticed such responses especially in the RA case. An element of reciprocity may be at work here: because stakeholders erode the position of experts, experts may try to erode the position of the stakeholders. However, we did not find tangible evidence for this. Another observation was that in cases where stakeholders/public and experts were directly communicating in meetings, the second group tended to dominate the discussions due to their high level of knowledge. This may damage creativity, for example in the visioning phase.

Thirdly, awareness of this relation in influence between experts (frequently connected to stakeholders) and the public at large, is important for policy-makers. In examples where strong societal actors participate as stakeholders in decision-making, governments should restore the balance. In the design of the participation process, it could be necessary to formally make it possible for lay people, also in developing countries, to also raise their voice.

The next question is whether the marriage between stakeholders or public and experts in water projects is a happy one. It definitely means a change in customary modes of delivery in such projects but necessarily a univocal change from one extreme to another extreme. Rather, it means a shifting power field in which all parties are looking for new roles during the phases of a project. Expert knowledge and experts’ views on both technical and financial dimensions of projects will be increasingly necessary and decisive in a more and more complex world. That experts and their knowledge regularly determine decision-making is a sign that decision-making of the democratic governmental powers to a large extent is dependent. The question arises as to whether experts and advisors are really the ‘sixth power’ in modern society, as for example Bovens et al. (2012) stipulate. Measured in influence, they might actually be the ‘fourth power’, in order before civil servants and the media. A related question remains of whether more technocracy means less democracy, and if so, which counter balance can be created to neutralize the power of strategically used knowledge by influential experts: an interesting field for further research.

References

Received 23 December 2015; accepted in revised form 2 July 2016. Available online 20 August 2016