ACCELERATED PAPER

cDNA microarray profiling of rat mammary gland carcinomas induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and 7,12-dimethylbenz[a]anthracene

Liang Shan1, Mei He2, Minshu Yu1, Cunping Qiu1, Norman H.Lee3, Edison T.Liu2 and Elizabeth G.Snyderwine1,4

1Chemical Carcinogenesis Section, Laboratory of Experimental Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA, 2Advanced Technology Center, Center for Cancer Research, National Cancer Institute, NIH, Gaithersburg, MD 20887, USA and 3The Institute of Genomic Research, Rockville, MD 20852, USA

4To whom correspondence should be addressed
Email: elizabeth_snyderwine@nih.gov

cDNA microarray analysis was used to examine gene expression profiles in normal female Sprague–Dawley rat mammary gland and in carcinomas induced by the cooked meat-derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and the potent experimental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA). Nine tubulopapillary carcinomas (five from PhIP-treated rats and four from DMBA-treated rats) and normal mammary gland from virgin, pregnant and lactating rats were examined on a rat 6.9k cDNA microarray. Although histologically identical, PhIP- and DMBA-induced carcinomas could be distinguished by hierarchical clustering and multi-dimensional scaling analyses of cDNA expression. In addition, the expression of 21 clones was statistically different between PhIP- and DMBA-induced carcinomas (F-test, P < 0.05). The data indicate that distinct chemical carcinogens induce unique gene expression patterns in mammary gland carcinomas. The specific chemical carcinogen-associated cDNA array profiles found in carcinomas may ultimately be applicable to better understanding cancer etiology. PhIP- and DMBA-induced carcinomas also shared similarities in cDNA expression profiles. By comparing the expression in carcinomas (PhIP plus DMBA induced) with normal rat mammary gland (at any stage of differentiation), 172 clones were found to be differentially expressed. Genes showing increased expression in carcinomas by cDNA microarray analysis (and further validated by immunohistochemistry and western blot analysis) include cyclin D1, PDGF-A, retinol binding protein 1, prohibitin and the transcription factor STAT5A. The similarities in gene expression between PhIP- and DMBA-induced carcinomas raise the possibility that several molecular pathways for rat mammary gland transformation are maintained irrespective of the carcinogenic initiating agent.

Introduction

Multiple genetic alterations and molecular pathways have been implicated in human breast cancer; however, the biology of this disease remains incompletely understood (1–3). Several of the genetic alterations include mutations in specific genes such as p53, amplification or over-expression of genes such as cyclin D1 and erbB2, and multiple chromosomal deletions detectable as loss of heterozygosity (1–4). The large number of genes potentially involved in cancer development emphasizes the importance of studying multiple genetic alterations in concert. The recent development of large-scale gene expression profiling by cDNA microarrays permits the concurrent analysis of thousands of genes and further knowledge of the biochemical pathways involved in human breast cancer (3,5–8).

Rat mammary gland cancer models have been used for many years to better understand the development of human breast cancer (9). Chemically induced mammary gland carcinomas are similar to human breast cancers in various aspects including histopathology, the origin of the cancers from ductal epithelial cells, and the dependency on ovarian hormones for tumor development (9). The experimental polycyclic aromatic hydrocarbon 7,12-dimethylbenz[a]anthracene (DMBA) is a potent and well-established mammary gland carcinogen in the rat model (9,10). A single dose of DMBA given to Sprague–Dawley rats at 50 days of age rapidly induces ~100% incidence of mammary gland carcinomas (10). 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a mutagenic/carcinogenic heterocyclic amine in cooked meat that has been implicated as a possible etiological factor in human breast cancer (11,12). PhIP was shown to be an effective mammary gland carcinogen in the Sprague–Dawley rat model when administered by multiple oral doses during the period of mammary gland development (13,14).

There are a growing number of recent studies on the molecular alterations in PhIP-induced rat mammary gland carcinomas (15–23). Some of the genetic changes in PhIP-induced carcinomas and/or derived cell lines include mutations in H-ras, loss of heterozygosity, microsatellite instability, single nucleotide instability and regions of loss and gain as detected by comparative genomic hybridization (CGH) (15,17,18,20–23). Interestingly, there is evidence that the genetic alterations in PhIP- and DMBA-induced carcinomas are different, with DMBA showing a much lower frequency of allelic imbalance and fewer gross chromosomal aberrations by CGH analysis (22,23).

To better understand the molecular events associated with mammary carcinogenesis, the expression of several genes has been examined in DMBA- and PhIP-induced rat mammary gland cancers, but the data are limited (16,19,24–29). A recent study has provided a more global examination of gene expression profiles in N-nitrosomethylurea (NNU)-induced rat mammary gland carcinomas by cDNA microarray analysis and competitive cDNA library screening (30). In the current study, a 6.9k rat cDNA microarray was used to compare the expression profiles in PhIP- and DMBA-induced rat mammary gland carcinomas. This analysis was undertaken to address whether the gene expression profile for a mammary gland carcinoma

Abbreviations: DMBA, 7,12-dimethylbenz[a]anthracene; MDS, multi-dimensional scaling plot; NNU, N-nitrosomethylurea; PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine.
Fig. 1. Clustering of gene expression data from PhIP- and DMBA-induced rat mammary gland carcinomas. (A) MDS plot of expression data in the carcinomas induced by PhIP (yellow) and DMBA (red) and in normal virgin mammary gland (white). MDS was carried out with 3498 clones that passed the quality control filters with both Cy3 and Cy5 channels (signal/background ≥2.0, spot size ≥25 mm, and signal intensity ≥500). B. Hierarchical clustering of carcinomas and gene expression array matrix for carcinomas induced by PhIP (P) and DMBA (D). A total of 869 clones were used in the cluster analysis. Two clusters were identified and shown expanded on the right with corresponding clone information. Cluster 1 contains clones with higher expression in DMBA-induced carcinomas, and cluster 2 contains clones with higher expression in PhIP-induced carcinomas. In all cluster figures, each column represents one sample and each row represents a distinct clone. Green squares, clones with low relative expression (ratio less than 1); black squares, clones with expression similar to reference (ratio of approximately 1); red squares, clones with high relative expression (ratio greater than 1); gray squares, insufficient data.

reflects a specific etiological agent. In addition, this study compared the molecular profiles in normal mammary gland (virgin, pregnant and lactating rats) to PhIP- and DMBA-induced carcinomas to gain insight into the gene expression alterations associated with rat mammary gland carcinogenesis that are in common for both carcinogens.

Materials and methods

Animals, treatment and mammary gland samples

Female Sprague–Dawley rats were obtained from the NIH animal supply (Animal Production Area, FCRDC, Frederick, MD). All animals were provided NIH Lab Chow and water ad libitum and housed in the NIH animal facility on a 12 h light/12 h dark cycle. Mammary gland carcinomas were induced by PhIP–HCl (Toronto Research Chemicals, North York, ON) and DMBA (Sigma, St Louis, MO) following established protocols that have been described previously in detail (10,13,14). Briefly, PhIP (75 mg/kg, p.o.) was administered to 43-day-old virgin rats once per day over a 12 day period (13,14). DMBA (Sigma) was administered as a single oral 75 mg/kg dose to 50-day-old virgin rats. Twenty-four hours after carcinogen administration, rats were placed on a defined high-fat diet until necropsy (13). Carcinomas were collected over an 8–13 week period after PhIP and DMBA treatment. Mammary gland tumor samples were fixed in formalin or 70% ethanol for histological or immunohistochemical examination, or snap frozen and stored at −80°C prior to RNA isolation. Tubulopapillary carcinomas, the major type of carcinoma induced by PhIP and DMBA in the Sprague–Dawley rat, were selected for array analysis. Histological classification was made according to the criteria outlined previously (31). Only tubulopapillary carcinomas were used for array analysis in order to avoid the possible variation in expression arising from histologically different tumor subtypes. Carcinomas were histologically indistinguishable between the two carcinogen treatment groups. Each carcinoma used in this study was from a separate rat.

Normal mammary gland tissue was collected from 50-day-old virgin, mid-pregnant (10–15 days) and lactating rats (with 10–12-day-old pups). For reference RNA in the array analysis, mammary gland tissue (abdominal and inguinal glands) was collected from five virgin Sprague–Dawley rats that were age-matched to the experimental rats, sham dosed with vehicle only, and provided the same defined high-fat diet after 55 days of age. Total RNA was isolated from the mammary gland from each rat, and an equal amount of RNA from each was pooled to provide the reference RNA for all cDNA microarray hybridizations.

RNA isolation

Total RNA was isolated using TRIzol extraction reagent (Gibco BRL, Rockville, MD) and as needed, samples were further purified using the Qiagen
Table I. Differentially expressed clones between PhIP- and DMBA-induced carcinomas

<table>
<thead>
<tr>
<th>Gene description</th>
<th>Clone ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predominantly expressed clones in PhIP-induced tumors</td>
<td></td>
</tr>
<tr>
<td>cytokine receptor-like protein</td>
<td>RGG87</td>
</tr>
<tr>
<td>guanine deaminase</td>
<td>RGI90</td>
</tr>
<tr>
<td>HLA-B associated transcript 3</td>
<td>RGA25</td>
</tr>
<tr>
<td>phosphodiesterase 4B, cAMP-specific ESTs</td>
<td>RGB95</td>
</tr>
<tr>
<td>ESTs</td>
<td>RGAW7</td>
</tr>
<tr>
<td>ESTs, weakly similar to K2C8</td>
<td>RGI99</td>
</tr>
<tr>
<td>ESTs, weakly similar to K2C8</td>
<td>RGF76</td>
</tr>
<tr>
<td>unknown</td>
<td>RGA43</td>
</tr>
<tr>
<td>unknown</td>
<td>RGL51</td>
</tr>
<tr>
<td>unknown</td>
<td>RGB46</td>
</tr>
<tr>
<td>unknown</td>
<td>RGC40</td>
</tr>
<tr>
<td>unknown</td>
<td>RGB45</td>
</tr>
<tr>
<td>unknown</td>
<td>RGB78</td>
</tr>
<tr>
<td>unknown</td>
<td>RGB90</td>
</tr>
<tr>
<td>Predominantly expressed clones in DMBA-induced tumors</td>
<td></td>
</tr>
<tr>
<td>CD24 antigen</td>
<td>RGA59</td>
</tr>
<tr>
<td>dual specificity phosphase</td>
<td>RGA87</td>
</tr>
<tr>
<td>PIP2 (phosphatidylinositol 5-phosphate 4-kinase alpha)</td>
<td>RGA80</td>
</tr>
<tr>
<td>ESTs, moderately similar to S43424 zipper-containing protein</td>
<td>RGA92</td>
</tr>
<tr>
<td>undetermined</td>
<td>NCI-ATC-Rn:1005e10</td>
</tr>
</tbody>
</table>

Expression of clones is statistically different between PhIP- and DMBA- induced carcinomas (F-test, \(P < 0.05 \)). Statistical analysis included all clones with permutation at 1000.
Fig. 3. Gene expression array matrix comparing carcinomas and normal mammary glands. Hierarchical clustering of 605 clones is shown on the left. Three clusters were identified and are shown expanded with corresponding clone information to the right. Cluster 1 contains clones with higher expression in carcinomas in comparison to normal mammary gland, and clusters 2 and 3 contain clones with lower expression in carcinomas in comparison with normal mammary gland. Between clusters 2 and 3, cluster 3 contains clones showing the lowest expression in carcinomas.

Results

Comparison of PhIP- and DMBA-induced carcinomas by array analysis

Hierarchical clustering and MDS plotting were used to compare the overall gene expression patterns of PhIP- and DMBA-induced carcinomas (Figure 1A and B). Clustering was based on a total of 869 clones, which satisfied the expression criteria of showing at least a 2-fold change in expression among at least two of nine carcinomas. By hierarchical clustering, clones showing similarities in expression patterns among the samples were grouped. By MDS, tumor samples were placed in a three-dimensional space according to their expression patterns, with the distance between the samples reflecting their approximate degree of correlation. Carcinomas could be separated based on carcinogenic agent indicating that PhIP- and DMBA-induced tumors had distinct expression profiles. It is notable from MDS analysis that the difference between the PhIP- and DMBA-induced carcinomas was clearly smaller than the difference between the carcinomas and the normal virgin mammary gland (Figure 1A). Out of 869 clones, 19 fell within a cluster (cluster 1) showing higher expression in DMBA-induced carcinomas, and 58 (cluster 2) showed a tendency toward higher expression in PhIP-induced carcinomas (Figure 1B). BRB Array Tools analysis further confirmed that 21 clones showed statistically significance differences in expression between PhIP- and DMBA-induced carcinomas (F-test, P < 0.05) (Table I).

Gene expression profiles of normal mammary gland

Normal mammary gland undergoes a process of lobuloalveolar development and differentiation from the virgin state through pregnancy and lactation, a process that has been shown to involve specific changes in gene expression (9,33,34). cDNA microarray analysis of normal virgin, pregnant and lactating rat mammary gland was carried out to examine in more detail the specific genes associated with mammary gland development and mammopoiesis and to facilitate the identification of genes potentially involved in carcinogenesis. Following the criterion of at least a 2-fold change in expression in at least two of the six samples, 371 clones were clustered (Figure 2). Six distinct expression clusters were identified which classified clones showing different expression patterns among the three physiological states of the mammary gland. Generally, the expression was more likely to be similar between the pregnant and lactating rats than between virgin and either pregnant or lactating rats. In three of the six clusters (numbers 1, 4
Table II. Differentially expressed genes in PhIP- and DMBA-induced carcinoma compared with normal mammary gland

<table>
<thead>
<tr>
<th>Over-expressed genes</th>
<th>Down-expressed genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell growth and cell cycle-related genes</td>
<td>Cell growth and cell cycle-related genes</td>
</tr>
<tr>
<td>cyclin-dependent kinase 4 (cdk4)</td>
<td>growth response protein (CL-6)</td>
</tr>
<tr>
<td>platelet-derived growth factor A-chain (PDGF A)<sup>b</sup></td>
<td>EGF-like prot. T16</td>
</tr>
<tr>
<td>prohibitin (phb)</td>
<td>DNA-binding protein inhibitor ID-3</td>
</tr>
<tr>
<td>cyclin D1</td>
<td>lin-7-A</td>
</tr>
<tr>
<td>protein kinase SNK (Snk)</td>
<td></td>
</tr>
<tr>
<td>calcium/calmodulin-dependent serine protein kinase</td>
<td></td>
</tr>
<tr>
<td>macrophage migration inhibitory factor (Mif)</td>
<td></td>
</tr>
<tr>
<td>Signal transduction and transcription-related genes</td>
<td></td>
</tr>
<tr>
<td>TAXREB107 DNA binding protein</td>
<td></td>
</tr>
<tr>
<td>GTPase</td>
<td></td>
</tr>
<tr>
<td>tyrosine 3-monoxygenase/tryptophan 5-monoxygenase</td>
<td></td>
</tr>
<tr>
<td>activation protein, zeta polypeptide</td>
<td></td>
</tr>
<tr>
<td>leukemia-associated cytosolic phosphoprotein stathmin</td>
<td></td>
</tr>
<tr>
<td>GTP-binding nuclear protein Ran/TC4</td>
<td></td>
</tr>
<tr>
<td>Cytoskeleton-related genes</td>
<td></td>
</tr>
<tr>
<td>transducin-like enhancer protein 4</td>
<td></td>
</tr>
<tr>
<td>elongation factor 1-alpha</td>
<td></td>
</tr>
<tr>
<td>pyrimidine binding protein</td>
<td></td>
</tr>
<tr>
<td>phosphatidylethanolamine binding protein</td>
<td></td>
</tr>
<tr>
<td>diazepam binding inhibitor</td>
<td></td>
</tr>
<tr>
<td>Metabolism-related genes and enzymes</td>
<td></td>
</tr>
<tr>
<td>alpha-actinin 4</td>
<td></td>
</tr>
<tr>
<td>190 kDa ankyrin isofrom</td>
<td></td>
</tr>
<tr>
<td>tubulin beta-15</td>
<td></td>
</tr>
<tr>
<td>tropomyosin 5, alpha</td>
<td></td>
</tr>
<tr>
<td>annexin 1 (p35) (Lipoporin 1)</td>
<td></td>
</tr>
<tr>
<td>acidic calponin</td>
<td></td>
</tr>
<tr>
<td>keratin (K5)</td>
<td></td>
</tr>
<tr>
<td>ezrin</td>
<td></td>
</tr>
<tr>
<td>Extracellular matrix genes</td>
<td></td>
</tr>
<tr>
<td>stearoyl-CoA desaturase 2</td>
<td></td>
</tr>
<tr>
<td>proprotein convertase subtilisin/kexin type 3</td>
<td></td>
</tr>
<tr>
<td>Na-K-Cl cotransporter (Nkcc1)</td>
<td></td>
</tr>
<tr>
<td>mitochondrial malate dehydrogenase (EC 1.1.1.37)</td>
<td></td>
</tr>
<tr>
<td>gamma-glutamyl transpeptidase</td>
<td></td>
</tr>
<tr>
<td>glutathione synthetase gene</td>
<td></td>
</tr>
<tr>
<td>enolase 1, alpha</td>
<td></td>
</tr>
<tr>
<td>brain glucose-transporter protein</td>
<td></td>
</tr>
<tr>
<td>ATPase inhibitor (rat mitochondrial IF1 protein)</td>
<td></td>
</tr>
<tr>
<td>Receptor and hormone regulation-related genes</td>
<td></td>
</tr>
<tr>
<td>lipolysis-stimulated remnant receptor beta subunit</td>
<td></td>
</tr>
<tr>
<td>retinol-binding protein 1</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Homo sapiens protein KIAA0429</td>
<td></td>
</tr>
<tr>
<td>jacob protein, alternatively spliced isoform delta2 (jac gene)</td>
<td></td>
</tr>
<tr>
<td>neuronal tissue-enriched acidic protein NAP-22</td>
<td></td>
</tr>
</tbody>
</table>

^aNormal mammary gland includes virgin, pregnant and lactating glands.

^bUnderlined indicates genes confirmed by western blotting, immunohistochemistry and/or real-time PCR analysis.

and 5), glands from lactating and pregnant rats showed similar expression levels that were distinct from the virgins. Specifically, clones in clusters 1 and 4 were under-expressed during lactation and pregnancy but over-expressed in virgin glands. In cluster 5, clones were over-expressed with lactation and pregnancy, but under-expressed in the virgin state. Other cluster patterns were also observed. Clusters 2 and 6 contained clones showing similarly altered expression levels in the virgin and lactating glands, whereas cluster 3 contained clones having under-expression in the lactating glands, but over-expression in virgin and pregnant states.

Comparison of PhIP- and DMBA-induced carcinomas to normal mammary gland

cDNA microarray analysis was used to compare the expression profile between the carcinomas from PhIP- and DMBA-treated rats and the normal mammary gland at any physiological state, specifically virgin, pregnant and lactating. We hypothesized that the expression profile in carcinomas would be distinct from the profile in normal mammary glands from virgin, pregnant and lactating rats. As the density of epithelial cells is low in the virgin gland relative to carcinomas (~15 versus 90% epithelial cells, respectively), the use of lactating and pregnant rat mammary glands in the comparison array analysis was expected to minimize the epithelial and stromal cell variations that could contribute to the expression differences between carcinomas and normal tissue. PhIP- and DMBA-induced carcinomas were compared with normal mammary gland as a means to determine whether there were changes in expression associated with carcinogenesis that occurred irrespective of the chemical carcinogen and, therefore, may
represent major conserved pathways for rat mammary gland carcinogenesis. Clustering analysis of 605 clones showing at least a 2-fold change in expression revealed three clusters that were differentially expressed between carcinomas and normal mammary gland at any physiological state (Figure 3). Cluster 1 contained clones showing higher expression in carcinomas than in normal mammary gland, and clusters 2 and 3 contained clones showing lower expression in carcinomas. Comparison between carcinoma and normal mammary gland identified 172 clones including 68 known genes that were either over-expressed or under-expressed in common between PhIP- and DMBA-induced carcinomas (Table II).

The differential expression of several known genes was further confirmed by immunohistochemistry. In comparison with normal mammary gland, cyclin D1, PDGF-A, STAT5A and retinol binding protein 1 were over-expressed in carcinomas induced by PhIP or DMBA (Figure 4). Western blot analysis also confirmed the over-expression of these genes as well as the over-expression of prohibitin (data not shown). Prohibitin and protein kinase SNK were further validated as over-expressed in carcinomas by real-time polymerase chain reaction (PCR) (in preparation).

Discussion

The objective of this study was to further characterize the molecular alterations associated with chemically induced rat mammary gland carcinomas through cDNA microarray analysis and to determine if distinct chemical carcinogens induce unique microarray profiles. Using a 6.9k array, 172 clones were found to be differentially expressed between mammary gland cancers and normal mammary gland. Several of the known genes that were identified in our array analysis as showing altered expression in rat mammary gland cancers have also been implicated in human malignancies including human breast cancer. These genes include cyclin D1, PDGF-A, stathmin, matrix Gla protein, prohibitin, peripheral benzodiazepine receptors and STAT family transcription factors (7,35–44). Alterations in expression of many of the same genes in both rat and human breast cancers support the value of the chemically induced rat mammary gland cancer model for elucidating critical genes and signaling pathways involved in the human disease.

In this study, rat mammary gland carcinomas were induced by two diverse chemical carcinogens: PhIP, a heterocyclic amine found in cooked meat, and DMBA, a potent experimental mammary gland carcinogen belonging to the class of polycyclic aromatic hydrocarbons. PhIP and DMBA induce different DNA adducts and unique mutation spectra in the mammary gland (45,46). In addition, the data to date support that carcinomas induced by PhIP and DMBA have different genetic alterations (22,23). In accordance with the data, the findings from cDNA microarray analysis indicate that carcinomas induced by these distinct carcinogens also have unique gene expression profiles. By hierarchical clustering, the carcinomas induced by PhIP and DMBA could be resolved and were further shown to be distinct by MDS plot analysis (Figure 1A). Twenty-one clones were statistically different between carcinomas induced by the two compounds (Table I). Further work is required to clarify the possibly divergent molecular pathways involved in PhIP- and DMBA-induced carcinogenesis. Knowledge of the unique expression profile in carcinomas induced by distinct environmental chemical carcinogens may ultimately be valuable for risk assessment and better understanding cancer etiology in humans.

By cluster analysis of PhIP- and DMBA-induced carcinomas and normal mammary gland, it was also possible to find similar alterations in expression in common between carcinomas induced by different carcinogens (Figure 3). Both PhIP- and DMBA-induced carcinomas showed an increased expression of cyclin D1 and CDK4 relative to normal mammary gland. Our findings concur with previous studies reporting an increased expression of cyclin D1 in DMBA-induced carcinomas (24,26) and studies showing an increased expression and increased protein level of cyclin D1 and CDK4 in NMU-induced carcinomas (30). Therefore, over-expression of cyclin D1 is observed in rat mammary gland carcinomas induced by structurally distinct chemical carcinogens. In human breast cancers, cyclin D1 has been shown to be frequently amplified and its protein over-expressed in >50% of cases (35). The observation that rat mammary gland cancers induced by a diverse group of chemical carcinogens all involve over-expression of cyclin D1 strongly supports the major importance of this gene and the pathways regulating this gene in rat mammary gland carcinogenesis.

PDGF-A is another gene found in this study that was confirmed as over-expressed in both PhIP- and DMBA-induced rat mammary gland carcinomas. In the human mammary gland, PDGF-A is a known mitogen that acts as a survival factor (36,37). It is also over-expressed in a large percentage of human breast cancers, and autocrine and paracrine loops with PDGF-A have been reported in 18 and 38% of human breast cancer cases, respectively (36,37). Additional studies are required to determine if elevated PDGF-A expression in rat mammary gland carcinomas is indicative of an autocrine/paracrine loop that facilitates growth autonomy. Nevertheless,
the finding that PDGF-A is over-expressed in both PhIP- and DMBA-induced carcinomas emphasizes the potential importance of this gene in rat mammary gland carcinogenesis.

PDGF as well as other growth factors, cytokines and hormones such as prolactin, a critical hormone for rat mammary gland carcinogenesis (47), in part mediate their effects on mammary gland growth and development via the STAT family of transcription factors (48,49). The results from the current study revealed that STAT5A was over-expressed in rat mammary gland carcinomas induced by PhIP and DMBA. In the mammary gland, STAT5A is known to promote cell proliferation and it is required for mammapoiesis and lactation (48,49). Studies in transgenic mice also indicate that STAT5A influences mammary epithelial cell survival and carcinogenesis (50). Phosphorylation and hence activation of STAT5A regulates the activity of many genes including cyclin D1 and the anti-apoptosis gene Bcl-XL (48,49). Studies in transgenic mice also indicate that STAT5A is relevant for the development of breast cancer. It is tempting to speculate that STAT5A is required, the increase in expression of STAT5A in rat mammary gland carcinomas induced by PhIP and DMBA supports the possibility that STAT5A is relevant for the development of breast cancer. It is tempting to speculate that alterations in the expression and activity of STAT5A may partly account for the elevated cyclin D1 expression in rat mammary gland carcinomas induced by PhIP and DMBA. In addition, a previous study has reported a change in the expression of STAT5A in rat mammary gland carcinomas induced by PhIP and DMBA. It supports the possibility that STAT5A is relevant for the development of breast cancer. It is tempting to speculate that changes in the expression and activity of STAT5A may partly account for the elevated cyclin D1 expression in rat mammary carcinomas and may also mediate the cell survival signals imparted by specific growth factors such as PDGF.

In summary, the findings from these studies are consistent with the notion that the profile of gene expression in a mammary carcinoma reflects the specific etiological agent. These specific profiles may ultimately be valuable for better understanding human cancer etiology and for risk assessment. Furthermore, the findings from this study show that there are common alterations in expression profiles among carcinomas that were observed irrespective of the chemical carcinogen. Genes showing similar alterations in expression may represent major molecular pathways associated with rat mammary cancer development. Studies to delineate these pathways in the rat model are expected to provide further insight into the etiology of human breast cancer.

References

Revised May 31, 2002; revised July 11, 2002; accepted July 24, 2002