
A Loop Conjecture for Metabolic Closure

D.A. Contreras1,‡, U. Pereira1,2,‡, V. Hernández2,‡, B. Reynaert2,‡, J.C. Letelier2,‡

1 Departamento de Fı́sica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
2 Departamento de Biologı́a, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.

letelier@uchile.cl

Abstract

Although in the last few decades a variety of theoretical tools
have been developed to better understand living organisms,
their impact on experimental research has been rather lim-
ited. A common element between these theories is the idea
of metabolic closure, i.e., the systems that produce all their
metabolites and catalysts. In spite of an increasing consensus
on the relevance of closure, a formal and operative definition
has remained elusive. In this paper we revisit RAF sets and
chemical organization theory and show how these two theo-
ries overlap and could help bring forth real world results. We
also state a theorem ensuring the presence of a cycle of in-
terdependent catalysts for RAF sets and conjecture that these
cycles give stability to the network. This conjecture is illus-
trated and supported by computer simulations. Unavoidably,
our viewpoint introduces the notion of fluxes and thus a tem-
poral dimension to the purely algebraic model of RAF sets.
The results of this work show that the incorporation of clo-
sure, topological and dynamical tools altogether is a promis-
ing path for a deeper understanding of living systems.

Introduction
In the last thirty years there have been many efforts directed
to develop theories to understand biological systems in terms
of metabolic closure or, equivalently, systems that produce
and maintain themselves. Two crucial models that defini-
tively put metabolic closure at the very center of biological
organization are: Autopoiesis, formulated by Maturana and
Varela (Maturana and Varela, 1980), and Rosen’s (M,R) Sys-
tems (Rosen, 1958). But these two theoretical studies and
similar theories (like the Chemoton or Autocatalytic sets),
although very clarifying in basic aspects, have not yet pro-
duced technical results that illuminate the daily life of bench
biologists involved in experimental research.

In the past (Jaramillo et al., 2010) we have emphasized
that a little known formalism called RAF sets (Hordijk and
Steel, 2004) is a particularly suited technical tool to under-
stand closure in general and autocatalytic sets in particu-
lar. Here we study the relation between RAF sets and the
chemical organization theory (COT), which is a theory that
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adds to the dynamical aspects by introducing the notion of
metabolic fluxes to the purely algebraic vision of RAF sets,
an idea deeply embedded in basic metabolic engineering.
This is accomplished by expressing the kinetic behaviour
of the components (molecules) in terms of a stoichiometric
matrix, which then leads directly to the concepts of rates and
fluxes, introducing the temporal dimension. This approach
can be used to expand the original RAF sets theory, which
we consider to be highly valuable for biology, but unfortu-
nately too algebraic to be of use, in particular lacking a way
to describe the time behaviour of the systems, which is of
most importance in the direction of a more realistic biologi-
cal context.

Here we will show how notions from chemical kinetics
can be fused with RAF sets to search for closure in metabolic
networks. Although the results presented here seems, ini-
tially, as a mere technicalities without theoretical relevance,
they open new research paths as we adjoint highly theoreti-
cal notions (RAF set and the metabolic closure) with an ac-
cepted used tool to understand metabolism in steady state.
In particular we show the logical relation between COT and
RAF sets.

RAF sets and COT in a Nutshell
We now give a brief introduction to the work of Hordijk and
Steel (2004), who came up with a formal framework to study
a autocatalytic systems. Their main aim appears to have
been to develop algorithms with which autocatalytic systems
in Kaufmann’s sense (1993) could be described and found
computationally. They have produced a powerful approach
that can be used to analyze a wide variety of systems. Their
formalism is based on the following two important sets: X
is the set of molecules involved in metabolism (i.e. metabo-
lites, catalysts or external input material, termed food set in
the formalism), and R is the set of reactions that define the
metabolic network. Each reaction r is represented as a tuple
(A,B), where A,B ⊂ X , A ∩ B = ∅, A are the reactants
and B the products of reaction r.

Further, to formalize the notion of catalysis, a specific set
C (called the set of “catalyzations” by Hordijk and Steel)
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is introduced. Each catalyzation c is a tuple (x, r), where
x ∈ X is the catalyst and r ∈ R is the reaction catalyzed by
x. Additionally, the subset of molecules that are used but are
not produced by metabolism is called food and denoted by
F . Thus, a catalytic reaction system over a food source F
is composed by a triplet L = (X,R, C) which defines the
universe of molecules (X), the reactions occurring among
these molecules (R) and the identity of the catalyst involved
in each reaction (C). Note that this already provides, al-
though at a very simple level, a way to refer to a system, and
distinguish the inner and outer components and the transfor-
mations that the components undergo.

The following additional functions are defined: ρ(r) = A
and π(r) = B, which return the reactants and the prod-
ucts of any given reaction r, respectively, and the funcion
supp(r) = ρ(r) ∪ π(r). With the help of these elementary
functions, the same notion can be extended to a set of re-
actions R′ as ρ(R′) =

⋃
r∈R′ ρ(r), where R′ ⊆ R. This

definition captures the conglomerate of molecules that par-
ticipate as reactants for a set of reactions. A similar def-
inition holds for π(R′), the products of a subset of reac-
tions. With these ideas we can define the closure of a subset
X ′ ⊆ X relative to R′ ⊆ R (clR′(X ′)) as the set of reach-
able molecules that can be synthesized by starting from X ′

and iteratively applying all the reactions in R′. Note that
this definition is of most importance, as it follows that a set
of molecules which is closed (i.e. it is equal to its closure)
under a set of reactions will not generate any new molecule
and thus, conserves its identity. This operation captures the
central idea of metabolic closure, which is fundamental for
achieving organizational invariance in autopoietic systems.
A catalytic reaction system is reflexively autocatalytic if for
each r ∈ R there is an x ∈ supp(R) such that (x, r) ∈ C.
In other words, every catalyst must be a reactant or product
of a reaction in the same system. The system is F -generated
if every reactant is either produced by the system or incor-
porated as a food item (i.e. formally ρ(R) ⊆ F ∪ π(R)).
A system that is reflexively autocatalytic and F -generated is
called a RAF set (see figure 1).

RAF sets can be understood informally as an interdepen-
dent set of biochemical reactions where all of the metabo-
lites, with the exception of the so-called food set, are pro-
duced by the collection of reactions R. This self generation,
a defining feature of autopoietic and (M,R) systems, is the
core of metabolic closure. Thus, RAF sets, autopoietic and
(M,R) systems overlap to a great extent; positioning RAF
sets as an operative theory to metabolic closure. The ad-
vantage of RAF set formalism is that it is precise enough to
be coded in well defined algorithms that exploit its intrinsic
recursiveness. To check if a given collection of biochemi-
cal reactions is indeed a RAF set, Hordijk and Steel (2004)
developed algorithms aimed to analyze the interdependence
between a given catalyst and its production pathway.

The chemical organization theory, initially developed by

Dittrich and Di Fenizio (2007), deals with chemical reaction
networks. In what is called static analysis, the part of this
theory that is concerned with the topology of the system,
molecules and reactions are defined in a very similar way as
in RAF sets. Most notably, both theories share the definition
of the closure operator. But while COT makes no explicit
mention to catalysts and therefore distances itself from bio-
logical systems in which this concept is fundamental, it does
incorporate tools to study the dynamical behaviour of chem-
ical reaction networks, thus provides a connection between
the structure of a system and the dynamical aspects of it.
This is acomplished by first expressing the system in terms
of the stoichiometric matrix and associated differential equa-
tions.

In COT, it is useful to recognize systems fulfilling certain
properties, such as closure. For example, a system is self-
sustained if it is able to generate every molecule that is used
up. When this topological consideration is transported to
the time domain, we can define mass-maintaining systems.
A system is said to be mass-maintaining when:

1. All reactions that can be fired by the molecules in the sys-
tem occur at some positive rate

2. Reactions whose reactants are missing from the system do
not occur

3. There is a combination of reaction rates such that all
molecules increase or maintain their concentration.

A system which is both closed and mass-maintaining is
called an organization. Organizations are interesting as they
resemble very closely autopoietic systems. Also, organiza-
tions are a the center of many theorems in COT. This the-
ory and RAF sets deal with closure. While one makes no
distinction between catalysts and metabolites, the other one
lacks the notion of time, which are essential elements of liv-
ing systems. In the next paragraph we will show an relation
between these two theories.

Kinetics in RAF sets
If a theory is to have impact on real biochemical world, it
must deal with the notions of that domain, thus, to gain a full
understanding of closure we must complement the purely al-
gebraic nature of RAF sets with ideas taken from Metabolic
Control Analysis (MCA), a field generated to understand
and measure fluxes in biochemical systems which is of com-
mon use in the field of metabolic engineering.

Current MCA is a quantitative theory that does not con-
sider closure, as catalysts (i.e. enzymes) are placed in the
network, but the reactions generating them are not taken
into account. By putting the quantitative aspects of MCA
and applying them to RAF sets, side by side, we can gain
insight in how to study closure quantitatively. All the theo-
ries of metabolic closure (Autopoiesis, (M,R) systems, Au-
tocatalytic sets, etc) are essentially algebraic or conceptual
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Figure 1: A simple example of a RAF set. Food elements
F are incorporated into the system and generate metabolites
M , which are transformed into two different catalysts sets:
a) Tin which regulates the inflow of F and C2 which cat-
alyzes its generation and b) Tout which regulates the outflow
of waste metabolitesW and C1 who catalyzes its formation.
In addition, C1 and C2 catalyze the formation and destruc-
tion of the transporter catalysts (Tout and Tin, respectively),
and also they mediate the generation and consumption of
each other, forming the Reflexive Autocatalytic core of the
system. Finally, growth is regulated by modulating the in-
flow of F and the outflow of W . We want to highlight the
loop defined by metabolites M which turn into C2 who reg-
ulates the formation of C1 starting from M , a reaction regu-
lated by C2.

models centered on connectivity but not in dynamics. To go
further in our understanding we must include the time course
evolution of the concentrations inside the system.

Fortunately, the formalism of Reder (1988) that uses the
stoichiometric matrix and the matrixDxv to study rates, can
be applied almost verbatim to analyze if a RAF set will grow
or disappear. The great advantage of applying MCA for-
malisms is that we can quantitatively study how a system
with metabolic closure can grow or disappear.

RAF sets are sets of coupled biochemical reactions with
the attribute that the catalytic dependences between reac-
tions and their catalysts are explicitly given. As said, RAF
sets demand that almost all the molecules that conform a
system can eventually be generated, directly or indirectly,
from certain food materials and that all catalysts are pro-
duced by the system.

The transformation part of a RAF set can be represented
by the formalism of the stoichiometric matrix, a well known
tool extensively used in fields like MCA and Systems Biol-
ogy in which every reaction is written as a column and every
metabolite is refered to as a row. For example, the matrix N
of the system described in figure 1 would be as following:

N =


1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 1 1 1 −1
0 1 0 0 0 −1 0 0 0
0 0 1 0 0 0 −1 0 0
0 0 0 1 0 0 0 −1 0
0 0 0 0 1 0 0 0 0


By using the column representation of reactions, it is con-

venient to define the addition of reactions as a standard ad-
dition operation of vectors. This operation expresses the oc-
curence of both reactions as a single net reaction.

Note that the catalytic part lies outside the stoichiometric
matrix and cannot be deduced from it. But, in an idea that
can be traced back at least to Reder (1988), the catalytic
part can be represented by a matrix Dxv (also known as the
Jacobian of the system) that contains all partial derivatives
relating every reaction with every metabolite (or catalyst) in
the system. Thus, the catalysts for a given reaction can be
discovered by ranking the partial derivatives of the rate of
this reaction respective to all metabolites (molecules) in the
system. For example, the Jacobian matrixDxv of the system
described in figure 1 would be:

Dxv =



∂Mv1 0 0 0 ∂Tin
v1 0

∂Mv2 0 ∂C1
v2 ∂C2

v2 0 0
∂Mv3 0 ∂C1

v3 ∂C2
v3 0 0

∂Mv4 0 ∂C1v4 0 ∂Tinv4 0
∂Mv5 0 0 ∂C2v5 0 ∂Toutv5

0 ∂W v6 ∂C1
v6 ∂C2

v6 0 0
0 ∂W v7 ∂C1

v7 ∂C2
v7 0 0

0 ∂W v8 0 ∂C2
v8 ∂Tin

v8 0
0 ∂W v9 0 ∂C2v9 0 0
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Every RAF set can then be described by two matrices; N ,
that shows the network connectivity, and Dxv, that quanti-
fies catalizations.

The necessity of using the Dxv matrix to analyze RAF
sets lies in the fact that autocatalysis is a phenomenon that
does not depend only on connectivity. As it has been show
recently by Plasson et al. (2010) and Piedrafita et al. (2010),
the stability of an autocatalytic set depends on the relative
rate of some reactions. Thus, two systems with identical
connectivities but with different kinetics for some reactions
can have vastly different behaviors.

As stated above, another theory concerned with formaliz-
ing biological organization is COT, a theoretical framework
also centered in the idea of closure differing from RAF as
the idea of catalyzation, perhaps the hallmark of RAF sets,
is not considered. On the other hand COT brings an idea,
the importance of fluxes in a network, that are not consid-
ered in RAF sets which is a purely algebraic approach to the
description of biological organization. Thus an important
question arises: can these two models be related? Can they
support each other, in the sense of across fields fertilization?
In the next section we clarify some relations between these
two models.

An observation needed at the very beginning is that anal-
ysis using RAF sets and COT belong to two very different
viewpoints as crucial elements in one theory are totally ab-
sent in the other. Thus as organizations (in the sense of
COT) require that the overall flux across a relevant subset
of reactions is maintained (thus avoiding the disappearance
of crucial metabolites that, if absent, will produce network
collapse). A mirror like situation can be stated with respect
catalyzations, a cornerstone idea in RAF sets, and (surpris-
ingly) an idea that is absent from COT. Thus we should ex-
pect that if a system is a RAF set it is not immediate that it
is also an organization. Only in some especial conditions we
should be able to find how these ideas can be concurrently
applied.

A hidden relation between RAF sets and COT
A further dissection of RAF sets shows that, although fluxes
and reaction rates initially seem to be absent from this
model, kinetic ideas do exist just below the surface. In effect
we propose two lemmas and a theorem that will bring new
light to the problem of comparing both approaches:

Lemma 1 If a catalytic reaction system L = (X,R, C) is
F-generated, then for all metabolites x(including catalysts)
produced by any reaction r ∈ R, x ∈ supp(R) there is a
positive linear combination of reactions r̄x =

∑
i αiri such

that the metabolite x belongs to the products of the reaction
r̄x, x ∈ π(r0) and the reactants of r̄x belong to the Food
set, i. e., ρ(r0)) ⊆ F .

Proof: Considering the algorithm used to find the closure
of L (Hordijk and Steel, 2004), let W = F . Then add

the products of reactions R0 = {r ∈ R|ρ(r) ⊆ W} to
W . Adding all reactions in R0 gives a global net reaction
r̄0 that consumes metabolites from the Food set F only and
produces each metabolite in W . If this process is repeated,
considering W = F ∪ π(R0), it is possible to build the set
R1 that contains all reactions that have their reactants in W ,
but excluding the reactions from R0. Adding all reactions
in R1 we obtain a new reaction r̄′1 that requires metabolites
from W only and produces any metabolite in π(R1). To
obtain the fact that this last reaction uses only metabolites
from the Food source, let r̄1 = αr̄0 + r̄′1,where α is the
most negative stoichiometric coefficient of the reaction r̄′1.
This procedure takes enough metabolites from F to generate
π(R1). If we repeat this algorithm until it is not possible to
find new metabolites, we will have generated clR(F ) = W .
If the system is F-generated, according to Hordijk and Steel
(2004), we have that clR(F ) = F ∪ supp(R). We have
shown that for every metabolite x ∈ clR(F ) a composite re-
action exists which generates it consuming food items only,
in fact it is one of the ri.

Lemma 2 If a catalytic reaction system L = (X,R, C) is
F-generated, there is a strict positive linear combination of
reactions r̂ =

∑
i αiri with αi > 0 such that all metabolites

are products of this reaction, i. e., r̂ is a strictly positive
vector.

Proof: From Lemma 1 it follows that for each metabo-
lite mj there is a positive linear combination of reactions
r̄mj

=
∑

i αi,jri such that this metabolite is produced ex-
clusively from the Food set. This linear combination r̄mj

is
the resultant net reaction associated with the path of reac-
tions j that generate each metabolite mj . If for all metabo-
lites we add their generating reactions r̄sum =

∑
i αiri with

αi =
∑

j αi,j , we have from the Lemma 1 that r̄sum is
stricly positive. We must note that not all reactions will be
used. We refer to these reactions generally as rs, having
αs = 0 in rsum for those reactions. If we consider the sum
of this reactions rnot =

∑
s rs, it will consume metabolites.

To maintain r̂ positive and still fire these non-essential re-
action (this will be needed later), we set r̂ = βrsum + rnot
with β sufficiently large. Then we can construct a strictly
positive linear combination r̂ = βrsum + rnot =

∑
i ᾱiri

with:

ᾱi =

{
1 if ri ∈ {rs}
βαi if ri /∈ {rs}

note ᾱi > 0

and all the metabolites are product of this reaction r0.
These lemmas, framed completely in the language of

RAF sets, could be interpreted as mere technical results
about RAF sets. In essence they state that every metabo-
lite can be generated from the food set and makes explicit
the overall reaction producing each, non-food, metabolite.
But every time we use a stoichiometric matrix N we are im-
plying a given kinetics because of the necessary equation
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relating N to the change of concentrations: N · v = dX/dt,
where v is the vector of rates. Thus the requirement, in COT,
that (dX/dt ≥ 0) can be phrased as a condition on the com-
ponents of v. These lemmas show how some (not all) Orga-
nizations could be RAF sets, and it is interestingly that they
are proved by using notions of linear algebra. Also note that
the positive linear combination predicted by the lemmas ex-
plicitely shows how to combine individual reactions in any
RAF set to attain mass-maintenance.

Once we have established this link we can a little bit fur-
ther and search for deeper connections. The next theorem
continues to exploit matrix N to sketch how some RA sets
are F-generated using the stoichiometric matrix N .

Theorem 1 If a catalytic reaction system is F-generated,
then there is a strictly positive rate vector v, such that
N · v = dX/dt is also stricly positive, where N is the stoi-
chiometric matrix of the system.

Proof: We note that the operationN ·v = dX/dt is equiv-
alently mathematical to make a linear combination of reac-
tions r =

∑
j αjrj if we consider each reaction as a column

and αj as the velocity of reaction rj . From Lemma 2, if
we take the reaction r0 and choose vj = ᾱj (normalizing
time units), therefore a v exists with components vj > 0 as-
sociated to a flux vector dX/dt that satisfies dXi/dt > 0,
equivalent to the column representation of r0 with all of their
components also positive.

Corollary 1 If a catalytic reaction system is F-generated,
then it is also an organization.

Proof: An F-generated system is, by definition, closed
and as theorem 2 shows, it also satisfies the property of
mass-maintenance. Thus, it is an organization.

This theorem explains the existing relations between Or-
ganizations, F-generated sets, RA sets and RAF (see fig-
ure 2). Essentially, we have proved that all F-generated sets
are organizations and a subset of them are also reflexive au-
tocatalytic. This subset is the RAF sets. Theorem 1 is a
simple one that has the virtue of illuminating how these two
theoretical frameworks are related to each other.

This result is important because some new technical the-
orems have being obtained by Dittrich’s group, for example,
on how to detect organizations among real metabolic net-
works (Centler et al., 2010, 2008). Thus, our theorem shows
that these new tools, developed to find organizaions, could
be also used to search for RAF sets.

In addition, we will make a definition to the sets that are
organizations and RA at the same time.

Definition 1 If a cataliytic reaction system is Reflexive Au-
tocatalytic and an Organization, then it is a Reflexive Auto-
catalytic Organization, RAO.

These sets are reaction systems that can be sustained, but
not necessarily can be generated from a food set F exclu-
sively. We have shown that all F-generated sets are orga-

Figure 2: Venn’s diagram depicting the logical relations be-
tween RA, RAF, and F-generated sets and organizations un-
der COT’s definition. All RAF sets are organizations, but
whether all organizations are F-generated is an ambiguous
matter.

Figure 3: A: A chain of dependent catalyzations. B: A cat-
alyzation loop

nizations, but the converse result (all organizations are F-
generated sets) is more difficult to handle. We propose two
different approaches: First, if one decides that the Food set
corresponds only to the molecules generated from the empty
set (in COTs phrasing of reactions), then it is clear that there
are organizations which are not F-generated. On the other
hand, for any organization it is always possible (due to the
closure property) to find a suitable set (generally not unique)
F such that the corresponding F-generated set is equal to the
given organization. Thus, the extend to which organizations
and F-generated sets overlap depends on which approach
one takes to express COT systems in terms of RAF sets.

The Loop Theorem
As most theories on biological organization are centered in
the notion of closure (Letelier et al., 2011), RAF sets formal-
ism give a succinct and useful description of closure. First,
we shall consider a chain of catalyzations in which a prod-
uct from one reaction catalyzes another reaction in the chain
(figure 3A). If eventually a product catalyzes an earlier step
(figure 3B), we have a catalyzation loop. As we shall see, in
a RAO it is always possible to find such a catalyzation loop
if the catalysts are not part of the food set. This condition
seems natural for systems with metabolic closure.

Considering this definition we propose:
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Theorem 2 If all catalysts in a RAO are generated by the
system, then there is at least one catalyzation loop.

Proof: In such a RAO every catalyst must be generated by
a reaction, which in turn must be catalyzed too. In this sense,
the production of every catalyst is directly dependent on an-
other and indirectly dependent on a sequence of catalysts.
The number of catalysts is finite therefore, at some point a
catalyst must depend indirectly on itself, thus, forming at
least one catalyzation loop. Note that not every catalyst is
part of a loop as it is allowed that some catalysts may cat-
alyze reactions which yield no catalysts as products, yet the
system as a whole must have at least one catalyzation loop.
Note that in case of direct autocatalysis, the loop is trivial.
Also, whether there is more than one catalyzation loop is a
question that must be addressed in each particular case.

An unsuspected consequence of the loop theorem is that
some of the catalysts inside the catalyzation loop must have
a dual catalytic role, that is enzymes that catalyze at least
the creation of other two enzymes, if not happen the trivial
case of all enzymes catalyze the creation of another one en-
zyme. This is interesting, as one modern re-interpretation
of Rosen’s results about how living systems avoid infinite
regress is by having enzymes with dual functions (Letelier
et al., 2006). Thus, this systemic result (i.e. existence of
moonlighting enzymes) can be achieved by two different
methods.

This theorem is a basic result that follows directly from
the basic definitions of RAOs, but it shows an important
property that needs to be underlined: the catalyzation loops
(one or more) inside a RAO may be considered as its auto-
catalytic core and, functionally, there is a difference between
the catalysts of the loop and the ones outside it.

We conjecture that the functional segregation hinted has
important consequences. In effect, to confer stability to the
core the catalysts outside it control the inflow and outflow
of matter to and from the core. Thus, the net flow of matter
inside it must be controlled, as a large flow would gener-
ate an exponential runaway and a small one would extin-
guish some core components, destroying its organization.
Keeping this balance between in and outflow will be seen
as homeostatic regulation. In summary, we conjecture that
the catalyzation loop confers long term stability to the net-
work. The analytical proof of this result seems difficult, but
we did computer simulations in small (toy-like) systems and
using mass-action kinetics, expresed for reactions:

s1 + s2 + ...
c1−→ p1 + p2 + ...

c2−→ q1 + q2 + ...

By the formula:

d[pk]

dt
= k1[c1]

∏
i

[si]− k2[c2]
∏
j

[pj ]

Figure 4 shows one example for the temporal evolution
of the concentrations of molecules for the RAF system of

Figure 4: Temporal evolution of RAF toy system (see fig-
ure 1). The system reaches a steady state in which all con-
centrations are different from 0.

Figure 5: Temporal evolution of a non-RAF system. Al-
though the concentrations of the catalysts C1 and C2 were
fixed, the system decays until its components disappear.

figure 1. We can see that a steady state is achieved. In fig-
ure 5 we simulated a similar system but without the reactions
that generate or destroy the catalysts C1 or C2, removing the
catalization loop and making the system a non-RAF set. In
this last case the concentrations of many components decay
to zero, stopping the network dinamics.

We also did the bifurcation analysis by varying rate con-
stants kin and kout corresponding to the reactions r1 : φ →
M and r9 : W → φ respectively . For the RAF set, al-
most every combination of parameters kin and kout leads
to a steady state, except at the border where kin = 0 or
kout = 0 and some regions close to these.

On the other hand, the non-RAF set has no stable points
for most values of kin and kout. This puts in evidence the
relevance of the autocatalytic core, so that the growth of one
part of the system encompasses the rest and grows harmoni-
cally and coherently between the inflow and outflow of mat-
ter.

Growth and Homeostasis in Autopoietic
Systems

Any increase in the concentration of a loop catalyst will
translate into an increased concentration of every other cata-
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Figure 6: Bifurcation diagram of the RAF set in figure 1,
for variables kin and kout. A similar diagram for a non-
RAF system has no stable region. (cyan dots=stable, black
Xs=unstable).

lyst in the loop, which would consequently lead to a further
increment of the first one, exhibiting an apparent autocat-
alytic behavior. At the same time, this loop must be con-
nected to side branches that lead to the production of cata-
lysts that are not directly related to autocatalysis, but with
the obtention and processing of the food sources that sus-
tain it. An interesting type of branches are the ones that
lead to the regulation of the enzymes that control the in and
outfluxes, because they are supposed to regulate the whole
metabolisms growth rate by coordinating these fluxes. This
fact shows us the importance of the topology, because every
enzyme must be whether part of a loop or a branch of it, thus,
a change in an enzyme concentration which is part of the
loop will have repercussions in the whole systems growth,
as it also affects the enzymes that regulate the fluxes. Thus,
the RAF sets may help to understand the dynamics of the
homeostatic process. This is not mutually exclusive with
the fact that an increase in the concentration of an enzyme
outside the loop may have a direct repercussion on global
growth.

The loop theorem has an important application for au-
topoietic systems, that can be defined as self-encapsulated
RAF sets. For an autopoietic system (that according to the
above theorem must contain at least one autocatalytic loop)
to be stable in time, there must be a fine balance between the
generation and destruction of molecules. But there must also
be a balance respective to control its volume in order to keep
the concentrations unaltered. Thus, the organization (à?la
Autopoiesis) of a RAF set must be under a precise homeo-
static control, as growth must be promoted, but in the context
of compensating for the volume increase without suffering
the consequences of autocatalytic growth. Thus, in a first

approach, we must allow for a system to grow in terms of
the net amount of molecules, but not in concentration. This
implies that volume must be under active control and that al-
lowing the system to grow would not be a contradiction with
homeostatic principles.

Discussion and Conclusion
As we have previously stated (Jaramillo et al., 2010) we con-
clude again that RAF sets formalism is particularly suited to
study closure. Of course many aspects of metabolic closure
escape this theory (the operator of organizational invariance
β of (M,R) systems is a prime example), but this framework
provides a solid starting point. The loop theorem proved
here, which is a property shared by RAOs, Autopoietic and
(M,R) systems is a good example of its power.

Another important point of the present study is to apply
the analysis of COT to RAF sets. As it is usual in theoretical
biology, the different frameworks generated to explain liv-
ing organization exist in closed universes without dialogue
between competing theories. Here, we partially break this
isolation by showing how organizations à la COT contain
all RAF sets, but not all RA sets. This inclusion, although
obvious and expected from a theoretical viewpoint, is not
easy to prove. We have developed demonstrations using ar-
guments from linear algebra, instead of the set theory ar-
guments favored in RAF. The most unexpected result is the
uncovering of chemical kinetics arguments in RAF sets. In
effect, RAF sets appear to be a purely algebraic entity, with-
out considerations for time nor kinetics; but as soon as their
stoichiometric matrix is expressed, the kinetic arguments of
COT are made obvious. Thus our lemmas and theorems
show deep relations between the pure algebraic formulation
of RAF sets with the dynamics of organizations in COT. Per-
haps this same reasoning could be also be applied to (M,R)
systems. Taken together, the results shown here show the
value of putting all the different notions of metabolic clo-
sure under a common analytical umbrella.

COT has already produced an interesting number of re-
sults on the dynamics of reaction networks, in particular re-
garding to the long-term temporal behaviour and stability
of these systems (Dittrich and Di Fenizio, 2007). An inter-
esting result from this theory, which complements the loop
theorem presented here, is the decomposition theorem for
organizations (Veloz et al., 2011). This theorem states that,
under certain conditions, it is possible to split a system into
subsystems whose dynamic behaviour are weakly coupled.
Thus, an open question is to investigate how our loop the-
orem, which seems to indicate that systems cannot be seg-
mented, is compatible with such uncoupling of subsystems.
In effect a catalyzation loop might constitute the minimum
decomposable unit.

We presented the conjecture that systems with at least one
catalyzation loop are more stable than similar systems with-
out such loops. This is a powerful result that will unavoid-
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ably demand tools from MCA, the most elaborate theory
about fluxes in biochemical networks, to be proven or re-
futed.

In summary, our efforts show that closure is a conceptual
key to understand biological organization, as an example we
have come close to use closure as an argument to prove one
theorem (loop theorem), which we believe is a valuable con-
ceptual step and a fertile direction for theoretical biology.
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