A review of one approach to bottom up assembly of minimal life Steen Rasmussen^{1,2}, Pierre-Alain Monnard¹, Martin Hanczyc¹, Anders Albertsen¹, James Boncella³, Eva Bonzli¹, Filippo Caschera¹, Mark Dorr¹, Harold Fellermann¹, Maik Hadorn¹, Wendie Jørgensen¹, Philipp Loffler¹, Sarah Maurer¹, Kent Nielsen¹, Pernille Pedersen¹, Carsten Svaneborg¹, Michael Wamberg¹, Rafal Wieczorek¹, Hans Ziock³ ¹Center for Fundamental Living Technology, University of Southern Denmark ²Santa Fe Institute, New Mexico, USA ³Los Alamos National Laboratory, New Mexico, USA steen@lanl.gov ## **Abstract** When seeking to assemble minimal life from the bottom up in wet carbon chemistry, the critical properties of life apparently emerge from the interconnected functions of three subsystems: information, metabolism and container. Such interconnected supramolecular systems, so-called protocells, are under the right circumstances able to mimic the main functions of a living cell although in a very simplified manner¹. Seeking to create minimal life from the top down leads us to a somewhat different picture, where construction of synthetic / streamlined genomes become the critical scientific issue^{2,3}. How to integrate the knowledge we obtain from the top down- and the bottom up approaches is a great challenge for our and related communities^{4,5} and a good problem to discuss at this meeting. In technical terms, our bottom up team explores ruthenium-based photocatalysis as metabolism, fatty acids vesicles, oil droplets and reverse micelles as containers and lipophilic XNA as minimal informational systems^{6,7}. Based on our experimental, computational and theoretical work we review protocell feeding, growth, division, motility, and information controlled metabolic production of containers^{8,9,10,11}. Finally, we demonstrate preliminary integration of biochemical- and microelectromechanical (MEMS) systems where life-like information processing and material production occur and interact in different medi^{12,13} and as such form an exciting frontier for the study of artificial life. ¹ Rasmussen S, et al., Protocells: Bridging nonliving & living matter, MIT Press, 2009 ² Gibson DG, et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science doi: 10.1126/science.1190719 ³ Rasmussen S, Life after the synthetic cell – Bottom up will be telling more (2010), Nature, 465422a, May 20 ⁴ Sunami T, et al., (2010) Detection of association and fusion of giant vesicles using a fluorescence-activated cell sorter, Langmuir 26: 15098 ⁵ Porcar M, et al., (2011), Ten grand challenges for synthetic life, to appear in Synthetic Biology. ⁶ Rasmussen S, et al., (2003) Bridging nonliving and living matter, Artificial Life 9: 269 ⁷ Rasmussen S, et al.,(2004) Transitions from nonliving to living matter, Science 303: 963 ⁸ Fellermann H, et al., (2007) Life-cycle of a minimal protocell – A dissipative particle dynamics study, Artificial Life 13; 319 ⁹ DeClue M, et al., (2009) Nucleobase mediated, photocatalytic vesicle formation from ester precursor molecules, JACS 131 931 Toyota T, et al., (2009) Self-propelled oil droplets consuming "fuel" surfactant, JACS Maurer S, et al., (2007) Schr-properted on droptes consuming Tuer surface and the implications for a protocell model. Chem Phys Chem 12; 828 ¹² http://www.fp7-matchit.eu ¹³ McCaskill, p. 253, in Protocells: Bridging nonliving & living matter, eds Rasmussen S, et al., MIT Press, 2009