Extending Shelf Life of Poultry and Red Meat by Irradiation Processing

DONALD W. THAYER

Food Safety Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Philadelphia, Pennsylvania 19118

(Received for publication February 11, 1993)

ABSTRACT

Research has demonstrated that ionizing radiation can inactivate parasites, eliminate or greatly reduce the populations of microbial pathogens, and extend the shelf life while preserving the desired nutritional and sensory properties of refrigerated poultry and red meats. Foodborne pathogens can be greatly reduced in population and sometimes completely eliminated from foods by low doses of ionizing radiation. The shelf life of poultry, pork, and beef can be significantly extended by treatment with ionizing radiation. Combination treatments with vacuum packaging or modified atmosphere packaging and ionizing radiation have produced better than predicted results. Additional research is needed on the combined processes.

Meat can be irradiated to eliminate or greatly reduce the numbers of foodborne pathogens, to extend its shelf life, or to produce a sterile shelf-stable product (33). Each of these objectives imposes a distinctly different ionizing radiation dose and processing requirement. The purpose of this manuscript is to present evidence for control of foodborne pathogens by doses of ionizing radiation below 10 kGy and to discuss in greater detail the use of the technology to extend shelf life of fresh meats with an emphasis on poultry meat.

Control of foodborne pathogens

The populations of several foodborne parasitic and bacterial pathogens when present on poultry, beef, pork, and other meats can be dramatically decreased or eliminated by treatments with rather modest doses of ionizing radiation. It is also possible by using cryogenic temperatures and vacuum packaging to produce high quality sterile meats by irradiating to the 12D dose for Clostridium botulinum (1,2).

Very modest doses of ionizing radiation can inactivate the protozoan Toxoplasma gondii (0.25 kGy) (7), the nematode Trichinella spiralis (0.3 kGy) (6), and the cestoda Cysticercus bovis and Cysticercus cellulosae (0.4-0.6 kGy) (16). Toxoplasmosis, though largely unrecognized by the general public, is one of man's most common diseases and is transmitted by ingestion of undercooked pork. T. gondii has become increasingly important as an opportunistic pathogen producing disease in the immunocompromized host (34). If pork were to be irradiated as permitted since 1985 in the United States (3,4) to inactivate T. spiralis, T. gondii would be inactivated also. T. spiralis, when ingested in undercooked pork, bear, and occasionally other meats, causes trichinosis, which may vary in severity from asymptomatic to lethal. Fortunately, trichinosis is quite rare in the United States. The larval stages of the beef and pork tape worms C. bovis and C. cellulosae, respectively, also are inactivated by radiation doses of less than 1 kGy. Thus, each of these parasitic diseases can readily be controlled by treating meat with ionizing radiation.

The radiation doses required to inactivate 90% (D10 value) of several foodborne bacterial pathogens have been determined. Aeromonas hydrophila is the causative agent of a mild diarrheal disease and has a D10 value of 0.14-0.19 kGy at 2°C in beef (29). Campylobacter jejuni, which is possibly the most prevalent pathogen associated with poultry, has a D10 value of 0.19 kGy at 0 to 5°C in ground turkey (18). Escherichia coli O157:H7 produces hemorrhagic colitis and has a D10 value of 0.27 kGy at 5°C in ground beef (37). Listeria monocytogenes has a D10 value of 0.77 kGy at 2-4°C on chicken (13). Salmonella spp. have D10 values ranging from 0.38 to 0.77 kGy at 2°C in mechanically deboned chicken (38). Staphylococcus aureus has a D10 value of 0.36 kGy in mechanically deboned chicken at 0°C (36). Clostridium botulinum endospores have a D10 value of 3.56 kGy at -30°C on chicken (2). A D10 value is given at -30°C for C. botulinum because control of this organism generally requires commercial sterility and that requires low temperatures to retain the desired organoleptic properties. There are exceptions to this, however, and a D10 value must be carefully determined considering both product and processing temperatures.

There is concern that irradiation will decrease the normal microbial flora of chicken to such an extent that pathogens such as Salmonella species will be able to grow rapidly under abuse conditions. Szczawińska et al. (35) tested this concept by inoculating mechanically deboned chicken meat with challenge doses of three different serovars of Salmonella following irradiation of the meat to 0, 1.25, or 2.5 kGy and storing the inoculated meat at 0, 10, or 20°C. Salmonella populations did not increase more rapidly even in those samples that had received a dose of 2.5 kGy than in the controls.

Poultry irradiation

The concept of preserving poultry and meat by irradiation is not new. In 1929 a patent was issued in France for food preservation by processing with high energy radiation (28). There was also a very early realization that the radiation dose required to inactivate bacteria was dependent on the type of radiation, the temperature of irradiation, the atmosphere, and the nature of the suspending medium (28). A number of studies of shelf-life extension of

Reference to a brand or firm name does not constitute an endorsement by the U.S. Department of Agriculture over others of a similar nature not mentioned.
chicken meat (30) and prepackaged fresh beef (9) were initiated shortly after World War II ended. Proctor et al. (30) found that nonirradiated chicken meat stored at 2-4.4°C for 1 week had spoiled and had a standard plate count of 4.8 x 10^7, but chicken meat irradiated to a dose of 7.4 kGy, using a 3 Mev electron beam, was still acceptable after 4 weeks of storage at 2-4.4°C. At this dose, however, there was a significant radiation effect on flavor. Vacuum-packed and frozen samples of chicken meat irradiated to doses of 18.6 kGy were not significantly different in flavor from controls. It was soon realized that meats subjected to sterilization doses of ionizing radiation must be irradiated in the frozen state and in the absence of air to retain the desired sensory properties, and for this reason this discussion will be limited to nonsterilization doses.

Thomley (40) irradiated vacuum-packed miniced chicken meat at room temperature to a dose of 2.5 kGy. Some irradiated samples remained wholesome after 80 d storage at 5°C. McGill et al. (24) irradiated whole eviscerated chicken carcasses in polyethylene bags packed in ice using a cobalt radiation source to zero, 0.93, and 4.65 kGy. Carcasses were stored at -22, 1, 4.4, and 10°C until spoilage occurred, as determined by bacteriological and physical examination. The unirradiated carcasses stored at 1°C spoiled after 11 d, but the carcasses that received 0.93 kGy required 20 d to spoil. The carcasses that received 4.65 kGy were not considered spoiled at 20 d. Storage at 1 rather than 4.4°C reduced the formation of rancidity. A sensory panel was unable to distinguish between unirradiated and irradiated (0.93 or 4.65 kGy) baked dark or white chicken meat after storage at 1°C for 2 or 7 d.

Merceri et al. (25) conducted a study of tray-packed cut-up fryer chickens irradiated with gamma rays from ^{60}Co to a dose of 0, 1.0, 3.0, and 5.0 kGy at ice or dry-ice temperatures and storage of the controls and irradiated samples at 1.1 or 4.4°C for up to 21 d. They reported that a dose of 3.0 kGy was optimum for extension of refrigerated shelf life whether the chicken was stored at 1.1 or 4.4°C. They recommended that although such chickens had a minimum shelf life of 21 d, that 14 d be considered optimal as the chicken was spoiled by day 19 of storage at 2°C. Henning et al. (26) reported a characteristic dose and temperature-dependent odor was observed. Boiling or frying diminished or eliminated the negative sensory effects of irradiation. The authors considered boiled chicken meat to be acceptable and fresh chicken meat to be very good after a dose of 10 kGy. The acid value of the extracted fat increased 4.5% and the peroxide value increased 136% after a dose of 2.5 kGy at 10°C.

Klinger et al. (17) and Basker et al. (5) irradiated tray-packed koshered broilers, leg meat, and breast meat packed in ice to doses of 2, 3, 3.75, and 4.5 kGy. Evaluations of samples irradiated to 3.7 kGy immediately after treatment indicated that there was no difference in sensory quality between irradiated and nonirradiated boiled chicken meat. Sensory differences became noticeable as storage time at 1-2°C increased. They concluded that the quality of the chilled irradiated leg meat was acceptable for about 2 weeks and the breast meat for about 3 weeks.

Hanas et al. (22) evaluated the organoleptic characteristics of raw, boiled, and fried poultry meat 48 h after irradiation at -15 or +10°C in polyethylene bags to doses of 0, 0.5, 1.0, 2.5, 5.0, or 10.0 kGy. A characteristic dose and temperature-dependent odor was observed. Boiling or frying diminished or eliminated the negative sensory effects of irradiation. The authors considered boiled chicken meat to be acceptable and fresh chicken meat to be very good after a dose of 10 kGy. The acid value of the extracted fat increased 4.5% and the peroxide value increased 136% after a dose of 2.5 kGy at 10°C.

Lescano et al. (21) irradiated chicken half breasts with bone and skin wrapped with polyvinyl chloride film and packed in polystyrene trays to doses of 0, 2.5, 3.0, 3.8, or 4.5 kGy at ambient temperature. The aerobic bacterial counts of the samples that received 2.5 kGy reached 10^9 CFU/g by day 19 of storage at 2°C, and the panel considered the sensory properties good up to day 22. Reduced levels of rancidity, release of fatty acids, and waterholding capacity were found in the irradiated samples. Control samples reached 10^6 CFU/g by day 8. The raw meat had a slight pinkish color and an unpleasant irradiation odor which was not noticeable after oven cooking. Chicken samples treated at doses greater than 2.5 kGy were considered organoleptically good up to day 22, but flavor and acceptability scores were lower.

Shamsuzzaman et al. (32) vacuum-packaged skinless and boneless chicken breasts in polyethylene bags. The chicken samples were heated to an internal temperature of 65.6°C either before or after irradiation with 10-MeV electrons to doses of 0, 1.1, 2.2, or 2.9 kGy. The samples were covered with ice during irradiation. After irradiation the samples were stored at 2°C for 0, 2, 4, 6, or 8 weeks before microbiological, vitamin, and sensory analysis. Some samples were inoculated with L. monocytogenes. The heating and vacuum-packaging "sous-vide" process had little effect on L. monocytogenes, and the residual inoculum reached 10^4 CFU/g after 8 weeks of storage at 2°C. However, after treatment with 2.9 kGy combined with the "sous-vide" process, L. monocytogenes remained undetectable during the 8-week storage period. The combination of irradiation with heating and vacuum packaging produced a much greater effect than would be predicted from the results obtained from either treatment alone. This is similar to results reported by Thayer et al. (39) with Salmonella typhimurium. Microbiological, vitamin, and sensory analyses indicated that unirradiated samples treated with the "sous-vide" process had a shelf life of less than 6 weeks, but samples irradiated to 2.9 kGy had a shelf life of at least 8 weeks with little effect on the odor and flavor and only a slight reduction in thiamin content.

Meat irradiation

The effects of low doses of ionizing radiation on the properties of beef have been investigated. Tiwari and Maccy (41) reported substantial reductions in the total number of aerobic mesophilic bacteria on ground beef that had been irradiated to 0.68 kGy and stored at either 2°C or 5°C for periods of up to 16 d. The non-irradiated samples reached a count of 10^7/g in 6 d at 5°C, whereas the samples irradiated to 0.68 kGy reached only 2.6 x 10^5/g in the same period. Urbain and Giddings (42) reported that the number of aerobic mesophilic bacteria on irradiated (2.5 kGy) vacuum-packaged beefsteaks did not exceed 10^5/g during 21 d storage at 4°C. They concluded that meats treated with phosphate retained better color and acceptance ratings, and that air should be excluded from...
the product. Urbain (43) reported that steak treated with phosphate, vacuum packaged, and irradiated to 1.0 kGy retained satisfactory microbiological quality after 21 d storage at 4°C and scored equally as well as fresh untreated steak for odor, flavor, juiciness, and overall quality. Niemand et al. (26) vacuum packaged sirloin steak in oxygen-permeable laminated bags and irradiated the samples to 0 or 2 kGy at 25°C. All samples were then stored at 4°C until withdrawn for sampling. They concluded that a shelf life of up to 10 weeks could be expected for the irradiated samples, twice that of the unirradiated samples. The flavor of the stored irradiated samples was improved by irradiation at 0 to 2°C. Niemand et al. (27) investigated the effects of 2.5 kGy, lactic acid, and the combination of lactic acid and irradiation on minced beef samples stored at 4°C. The population of aerobic bacteria in the vacuum-packed control samples reached 10^6/g in 4 d, whereas the population in the vacuum-packed irradiated plus lactic acid-treated samples did not exceed 10^5/g during 21 d of storage. Risvik (31) conducted a sensory evaluation of vacuum-packed beef rumpsteak gamma irradiated at ambient temperature to doses of 0, 1.0, 2.5, 5.0, and 10.0 kGy before and after storage for 3 months at 4°C. All irradiated samples had significantly different sensory properties from unirradiated controls both immediately after irradiation and after storage. Dose-related odor, off-flavor, rancidity, metallic taste, and sweetness were noted. After 3 months storage, all irradiated samples were unsuitable for consumption; however, this author notes, the samples that received 1.0 and 2.5 kGy had total viable bacterial counts in excess of 10^9/ml of meat juice and should have been considered spoiled and not evaluated by a sensory panel.

Mattison et al. (23) investigated the effects of a 1.0 kGy gamma radiation dose at ambient temperature on the microflora and sensory properties of vacuum-packaged pork loins over a storage period of up to 21 d at 4°C. The 1-kGy dose was selected because this is the approved maximum treatment for control of trichinae larvae. Irradiation lowered the numbers of bacteria, and after 14 d storage there were no detectable sensory differences between irradiated and nonirradiated pork. Ehioba et al. (8) reported that a radiation dose of 1 kGy extended the shelf life of vacuum-packaged ground pork by 2.5-3.5 d. Lebepe et al. (20) irradiated vacuum-packed pork loins at ambient temperature to 3.0 kGy and evaluated the effects on the microflora during storage at 2-4°C. They concluded that the 3-kGy treatment extended the shelf life of vacuum-packaged pork loins to more than 90 d compared to 41 for nonirradiated loins. There was no evidence that the spoilage of the irradiated pork loins differed from that of the nonirradiated loins. Chemical spoilage began at 91 d in the loins stored at 2-4°C.

Grant and Patterson (10) investigated the combination of irradiation (1.75 kGy) with modified atmosphere packaging (MAP) on the microbiological quality, color, and odor of pork stored at 4°C. A mixture of 25% CO₂ and 75% N₂ was recommended to improve the microbiological and sensory quality of the irradiated pork chops. Grant and Patterson (11) concluded from a study of minced pork packed in 25% CO₂ and 75% N₂ and then irradiated to 1.75 kGy that the irradiated MAP pork was microbiologically safer than the nonirradiated MAP pork. Lambert et al. (19) concluded that Clostridium botulinum toxin production occurred faster in inoculated fresh pork using MAP concentrations of CO₂ of 30% or less. A 1-kGy radiation dose with 45-75% CO₂ MAP delayed toxin production.

Temperature control during irradiation in the studies by Mattison et al. (23) and Lebepe et al. (20) was either minimal or lacking entirely. Mattison et al. (23) state that the temperature of the samples upon arrival at the irradiation source was 0°C. However, the irradiation required 207 min, and no temperature measurements of the samples immediately following irradiation were reported. Adverse effects of irradiation temperatures from 5 to 10°C have been reported on the flavor of pork, beef, and chicken (44). Mattison et al. (23) reported excellent results from their studies; could better results have been obtained by these and other workers by maintenance of irradiation temperature between 0 and 5°C as was reported by Nieman et al. (26)?

CONCLUSION

Improved shelf life of meat can be obtained by irradiation, particularly in vacuo. If vacuum packaging is used, however, there is concern about the potential for outgrowth and toxin production by C. botulinum. Irradiation's chief advantage is the increased microbiological safety of its product, and its use to extend shelf life must be done only without compromising safety. Significant shelf-life extensions of MAP poultry are routinely obtained by industry, and the effect of the combination of MAP with irradiation appears to have received little if any attention by investigators. The combination of MAP with irradiation of beef also has not been extensively investigated. The combination of MAP with irradiation of pork has been investigated with promising results. It is also apparent that greater attention should be given to the temperature of the products during the irradiation process to produce optimum sensory properties. It seems very probable that the combination of modern packaging techniques and ionizing irradiation will increase shelf life of meats significantly.

ACKNOWLEDGMENTS

The author thanks V. H. Holsinger, S. C. Thayer, and J. H. Woychik for their review of this manuscript. This manuscript is based on a presentation at the Pack Expo '92 Conference, Chicago, IL, November 8-12, 1992.

REFERENCES

JOURNAL OF FOOD PROTECTION, VOL. 56, OCTOBER 1993

